Three-Body Problem and Precision Physics

V.I. Korobov

Joint Institute for Nuclear Research 141980, Dubna, Russia

Yerevan, October, 2024

メロト 不得 トイヨト イヨト 三日

V.I. Korobov NRQED

Content

- Quantum Three-Body Problem
- Onvelativistic Quantum Mechanics (NRQED)
- O Physics of exotic atoms
- Precision Spectroscopy of the Hydrogen molecular ions

A D > A P > A B > A B >

3

Variational expansion Helium atom

Variational expansion

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Variational Principle for bound states

We solve a stationary Schrödinger equation,

 $H\Psi = E\Psi$,

We assume that Hamiltonian ${\it H}$ is a selfadjoint operator in a Hilbert space, which satisfies

 $H \ge cI, \tag{1}$

where c is some constant, not necessarily positive. Let us define a functional

 $\Phi(\Psi) = \frac{(\Psi, H\Psi)}{(\Psi, \Psi)} \,,$

This functional is bound from below by c. Stationary points of the functional (1) determine energies and WF of bound states.

Variational expansion Helium atom

Exponential expansion

This basis has a long history, probably the first explicit formulation of the method has been done by Power and Somorjai^2 $\,$

The wave function is taken in the form

$$\Psi_{LM}(\mathbf{r}_1, \mathbf{r}_2) = \sum_{l_1+l_2=L \text{ or } L+1} C_{l_1 l_2 n} \mathcal{Y}_{LM}^{l_1 l_2}(\mathbf{r}_1, \mathbf{r}_2) e^{-\alpha_n r_1 - \beta_n r_2 - \gamma_n r_{12}},$$

where α_n , β_n , and γ_n are randomly generated parameters:

$$\alpha_{i} = \left[\left\lfloor \frac{1}{2}i(i+1)\sqrt{p_{\alpha}} \right\rfloor (A_{2} - A_{1}) + A_{1} \right] + i\left\{ \left[\left\lfloor \frac{1}{2}i(i+1)\sqrt{q_{\alpha}} \right\rfloor (A_{2}' - A_{1}') + A_{1}' \right] \right\},$$

 $\lfloor x \rfloor$ designates the fractional part of x, p_{α} and q_{α} are some prime numbers. Parameters β_i and γ_i are obtained in a similar way.

Variational expansion Helium atom

Exponential expansion. Main properties

One of the merits of the method is a very high convergence rate (in common).

Demerits of the method:

- Fast degeneracy of the basis set with increase of the basis. In a double precision arithmetics already for $N \sim 200$ calculations become unstable. That may be cured by the use of multiprecision packages, which allows to work with arbitrary number of significant digits.
- For the helium atom ground state for large *N* rate of convergence become rapidly to slow down.
- Slow convergence for systems with two heavy particles as H₂⁺.

(a)

Variational expansion Helium atom

Examples. Helium Atom

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Quantum Three-Body Problem

Helium atom

PHYSICAL REVIEW A 98, 012510 (2018)

Nonrelativistic energy levels of helium atoms

D. T. Aznabaev, 1,2,3 A. K. Bekbaev, 1,4 and Vladimir I. Korobov1,5

TABLE II. Nonrelativistic energies of the S, P, D, and F states of a helium atom. N is the number of basis functions. The two lines represent two consecutive calculations with the largest basis sets to show convergent digits. The third line presents calculations by Drake and Yan [23].

State	Ν	E_{nr}	State	Ν	E_{nr}
$1^{1}S$ $1^{1}S$	18000 22000	-2.90372 43770 34119 59831 11592 45194 40432 -2.90372 43770 34119 59831 11592 45194 40443	$4^{1}S$ $4^{1}S$	14000 18000	-2.03358 67170 30725 44743 92926 44363 64 -2.03358 67170 30725 44743 92926 44363 87
$2^{1}S$ $2^{1}S$	18000 22000 [23]	-2.14597 40460 54417 41580 50289 75461 918 -2.14597 40460 54417 41580 50289 75461 921 -2.14597 40460 5443(5)	4 ³ S 4 ³ S	14000 16000	-2.03651 20830 98236 29958 03780 71617 853 -2.03651 20830 98236 29958 03780 71617 874
$2^{3}S$ $2^{3}S$	14000 16000 [23]	-2.17522 93782 36791 30573 89782 78206 81124 -2.17522 93782 36791 30573 89782 78206 81125 -2.17522 93782 367912(1)	$4^{1}P$ $4^{1}P$	18000 22000 [23]	-2.03106 96504 50240 71475 89314 36090 3 -2.03106 96504 50240 71475 89314 36094 1 -2.03106 96504 5024(3)
$2^{1}P$ $2^{1}P$	18000 22000 [23]	-2.12384 30864 98101 35924 73331 42354 -2.12384 30864 98101 35924 73331 42374 -2.12384 30864 98092(8)	4 ³ P 4 ³ P	18000 22000 [23]	-2.03232 43542 96630 33195 38824 67087 -2.03232 43542 96630 33195 38824 67103 -2.03232 43542 9662(2)
$2^3 P$ $2^3 P$	16000 18000 [23]	-2.13316 41907 79283 20514 69927 63793 -2.13316 41907 79283 20514 69927 63806 -2.13316 41907 7927(1)	$4^{1}D$ $4^{1}D$	22000 26000 [23]	-2.03127 98461 78684 99621 39438 073 -2.03127 98461 78684 99621 39438 143 -2.03127 98461 78687(7)
3 ¹ S 3 ¹ S	18000 22000	-2.06127 19897 40908 65074 03499 37089 2816 -2.06127 19897 40908 65074 03499 37089 2824	4 ³ D 4 ³ D	18000 22000 [23]	-2.03128 88475 01795 53802 34920 591 -2.03128 88475 01795 53802 34920 630 -2.03128 88475 01795(3)
3 ³ S 3 ³ S	14000 16000	-2.06868 90674 72457 19199 65329 11291 75048 -2.06868 90674 72457 19199 65329 11291 75049	$4^1 F$ $4^1 F$	18000 22000 [23]	-2.03125 51443 81748 60863 20824 071 -2.03125 51443 81748 60863 20824 079 -2.03125 51443 81749(1)

V.I. Korobov

NRQED

Variational expansion Helium atom

Other examples

system		Е
$^{4}\text{He}^{+}\bar{p}(L=34, v=1)$	Kino	-2.996335432
	Korobov	-2.9963354479662700(5)
$H_2^+(L=0, v=19)$	Moss	-0.49973123063
	Korobov	-0.499731230655812(2)

The last example is of special interest since that is the last vibrational *S*-state. The wave function of this state has 19 nodes(!), and a binding energy is $3.390939346 \times 10^{-6}$ a.u., that is *five orders* less than the binding energy of the ground state.

Principles of NRQED Basic interactions and perturbation theory Leading order relativistic and radiative contributions

メロシメ 日マメ モン メ 田 マ

Ξ.

Nonrelativistic QED

Principles of NRQED Basic interactions and perturbation theory Leading order relativistic and radiative contributions

メロシ メヨシ メヨシ メヨシー

1

Concept of NRQED

QED

$$\mathcal{L}_{\text{QED}} = \bar{\psi} \left[\left(i\partial - e A \right) \gamma - m \right] \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu},$$
$$\bigcup$$

Nonrelativistic QED

 $\mathcal{L}_{\mathrm{NRQED}}$

Effective Hamiltonian

$$H_{\text{eff}} = \sum_{i} \frac{\mathbf{P}_{i}^{2}}{2m_{i}} + e^{2} \sum_{j>i} \frac{Z_{i}Z_{j}}{r_{ij}} + \text{higher order corrections}$$

(Here $\mathbf{P}_i = \mathbf{p}_i + e\mathbf{A}$)

Principles of NRQED Basic interactions and perturbation theory Leading order relativistic and radiative contributions

<ロ> <四> <日> <日> <日> <日> <日> <日> <日> <日</p>

Nonrelativistic QED Lagrangian

The Lagrangian for NRQED is built out nonrelativistic (two-component) Pauli spinor fields ψ for each of the electron, positron, muon, proton, etc. Photons are treated in the same fashion as in QED.

$$\begin{split} L_{\text{eff}} &= -\frac{1}{2}(E^2 - B^2) + \psi_e^* \left(i\partial_t - e\varphi + \frac{\mathbf{D}^2}{2m} + \frac{\mathbf{D}^4}{8m^3} + \ldots \right) \psi_e \\ &+ \psi_e^* \left(c_F \frac{e}{2m} \sigma \mathbf{B} + c_D \frac{e}{8m^2} \left[\mathbf{D} \mathbf{E} \right] + c_S \frac{e}{8m^2} \left\{ \sigma \cdot [i\mathbf{D} \times \mathbf{E}] \right\} \right) \psi_e \\ &+ \text{higher order terms + muon, proton, etc.} \\ &- \frac{d_1}{m_e m_\ell} (\psi_e^* \sigma_e \psi_e) (\psi_\ell^* \sigma_\ell \psi_\ell) + \frac{d_2}{m_e m_\ell} (\psi_e^* \psi_e) (\psi_\ell^* \psi_\ell) + \ldots \end{split}$$

where $\mathbf{D} = \nabla - ie\mathbf{A}$. $c_D = 1 + 2\kappa + \frac{\alpha}{\pi} \frac{8}{3} \left[\ln\left(\frac{m}{2\Lambda}\right) + \frac{5}{6} - \frac{3}{8} \right]$, $c_S = 1 + 2\kappa$, $c_F = 1 + \kappa$, $d_1 = (Z\alpha)^2 \frac{2}{m_e^2 - m_\ell^2} \ln\left(\frac{m_e}{m_\ell}\right)$, $d_2 = (Z\alpha)^2 \left\{ \frac{7}{3} - 2\ln\left(\frac{m}{2\Lambda}\right) + \frac{2}{m_e^2 - m_\ell^2} \left[m_e^2 \ln\left(\frac{m_\ell}{\mu}\right) - m_\ell^2 \ln\left(\frac{m_e}{\mu}\right) \right] \right\}$.

NRQED requirements

Requirements for the NRQED Lagrangian interaction terms:

- Hermiticity;
- Gauge invariance. We use covariant derivatives: $\mathbf{D} = \nabla ie\mathbf{A}$;
- Parity. The Lagrangian should be parity even;
- Time reversal. The Lagrangian should be even under time reversal transformation.
- Coupling constants are determined by requiring that predictions of QED and NRQED agree to a desired order in (v/c);
- Contributions from QED that involve relativistic loop momenta are absorbed into NRQED in a form of various local interactions.

 Quantum Three-Body Problem
 Principles of NRQED

 Nonrelativistic QED
 Basic interactions and perturbation theory

 Applications
 Leading order relativistic and radiative contributions

Basic interactions and perturbation theory

メロシメ 日マメ ヨマ

3

Principles of NRQED Basic interactions and perturbation theory Leading order relativistic and radiative contributions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□>

Examples of basic interactions in NRQED. Vertices.

Here $\mathbf{q} = \mathbf{p}' - \mathbf{p}$ is a transferred impulse of the particle.

V.I. Korobov

 Quantum Three-Body Problem
 Principles of NRQED

 Nonrelativistic QED
 Basic interactions and perurbation theory

 Applications
 Leading order relativistic and radiative contributions

NRQED propagators

A natural choice of a gauge for the electromagnetic field is the Coulomb gauge $\left(\textbf{kA}=0\right)$

 $\begin{cases} G^{00} = \frac{1}{\mathbf{k}^2}, & - \text{the Coulomb photon propagator,} \\ G^{ij} = \frac{\delta_{ij} - k_i k_j / \mathbf{k}^2}{k^2 + i\varepsilon}, & - \text{the transverse photon propagator,} \\ G^{0i} = G^{i0} = 0, & i, j = 1, 2, 3. \end{cases}$

For exchange photons $k_0 \approx m \alpha^2$ and

$$\label{eq:Gij} {\cal G}^{ij}\approx -\frac{1}{{\bf k}^2}\left[\delta_{ij}-\frac{k_ik_j}{{\bf k}^2}\right].$$

Propagators for massive particles

$$\frac{1}{E-\mathbf{p}^2/(2m)+i\varepsilon}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ◆ ○ ◆

Quantum Three-Body Problem Basic interactions and perturbation theory Nonrelativistic QED Applications

Zero-order approximation and perturbation theory

Zero-order approximation is the nonrelativistic Hamiltonian

$$H_0 = \sum_{i} \frac{\mathbf{p}_i^2}{2m_i} + \frac{e^2}{4\pi} \sum_{j>i} \frac{Z_i Z_j}{r_{ij}}$$

Its Green's function is defined as follows

 $K_0(2,1) = e^{-iH_0(t_2-t_1)}, \qquad [i\partial/\partial t_2 - H_0(2)] K_0(2,1) = i\delta(2,1).$

Let $H = H_0 + V$, then we can expand K in increasing powers of V:

$$K(2,1) = K_0(2,1) + K^{(1)}(2,1) + K^{(2)}(2,1) + \dots$$

For instantaneous interaction:

$$\mathcal{K}^{(1)}(2,1) = -i \int \mathcal{K}_0(2,3) \mathcal{V}(3) \mathcal{K}_0(3,1) d\tau_3,$$

For a transverse photon:

$$K^{(1)}(2,1) = -i \int K_0(2,4) V(4) G(4,3) K_0(4,3) V(3) K_0(3,1) d\tau_3 d\tau_4,$$

Functions V(3) and V(4) are some vertex functions of interaction with the electro-magnetic field. < D > < A >
 Quantum Three-Body Problem
 Principles of NRQED

 Nonrelativistic QED
 Basic interactions and perturbation theory

 Applications
 Leading order relativistic and radiative contributions

Leading order relativistic and radiative contributions.

イロン 不得 とくほど イヨン

э.

Leading order relativistic and radiative contributions

Đ.

Breit-Pauli Hamiltonian

Quantum Three-Body Problem Nonrelativistic QED

Leading order relativistic and radiative contributions

Electron self-energy. Low energy approximation

We use a quasi-relativistic approximation to the self-energy contribution

$$\begin{split} \Gamma_{(1)} &= i e^2 \int \frac{d^4 k}{(2\pi)^4} \; \frac{\mathbf{p} + (\mathbf{p} + \mathbf{k})}{2m} \\ &\times \frac{1}{E + k^0 - (\mathbf{p} - \mathbf{k})^2 / 2m} \; \frac{1}{E + k^0 - (\mathbf{p}' - \mathbf{k})^2 / 2m} \\ &\times \frac{\mathbf{p}' + (\mathbf{p}' + \mathbf{k})}{2m} \; \frac{1}{k^2 - \lambda_{min}^2} \left(\delta^{ij} - \frac{k^i k^j}{\mathbf{k}^2 + \lambda_{min}^2} \right). \end{split}$$

In a limit of small q and taking into account a new regularization parameter Λ

$$\begin{split} \Gamma^{\nu}_{(1)}(p,p') &= \gamma^{\nu} \frac{\alpha}{3\pi} \frac{q^2}{m^2} \left(\ln \frac{mc}{2\Lambda} - \frac{3}{8} + \frac{5}{6} \right) \\ &+ \frac{i}{2m} \frac{\alpha}{2\pi} \sigma^{\nu\mu} q_{\mu}, \\ \sigma^{\nu\mu} &= \frac{i}{2} \left(\gamma^{\nu} \gamma^{\mu} - \gamma^{\mu} \gamma^{\nu} \right). \end{split}$$

Principles of NRQED Basic interactions and perturbation theory Leading order relativistic and radiative contributions

< ロ > < 同 > < 三 > < 三 >

Self-energy correction in the NRQED. Low energy.

The ultrasoft scale contribution may be expressed:

$$E_{L} = \frac{2\alpha}{3\pi m^{2}} \int_{0}^{\Lambda} k \, dk \left\langle \mathbf{p} \left(\frac{1}{E_{0} - H - k} \right) \mathbf{p} \right\rangle - \delta m \left\langle \psi_{0} | \psi_{0} \right\rangle.$$

The integrand may be further rearranged using the operator identity

$$(E_0-H-k)^{-1} = -1/k - \frac{1}{k^2}(E_0-H) + \frac{1}{k^2}\frac{(E_0-H)^2}{E_0-H-k}$$

that results in

$$E_{L} = \frac{2\alpha}{3\pi m^{2}} \left[-\left\langle \mathbf{p}^{2} \right\rangle \Lambda + \left\langle \mathbf{p} \left[H, \mathbf{p} \right] \right\rangle \ln \Lambda + \int \frac{dk}{k} \left\langle \mathbf{p} \frac{(E_{0} - H)^{2}}{E_{0} - H - k} \mathbf{p} \right\rangle \right] -\delta m \left\langle \psi_{0} | \psi_{0} \right\rangle.$$

Self-energy correction in the NRQED. Low energy.

Thus, the remaining part may be split onto a finite nonlogarithmic contribution

$$E_{L}^{(0)} = \frac{2\alpha}{3\pi m^2} \int_{0}^{E_h} k \, dk \left\langle \mathbf{p} \left(\frac{1}{E_0 - H - k} + \frac{1}{k} \right) \mathbf{p} \right\rangle \\ + \frac{2\alpha}{3\pi m^2} \int_{E_h}^{\infty} \frac{dk}{k} \left\langle \mathbf{p} \frac{(E_0 - H)^2}{E_0 - H - k} \mathbf{p} \right\rangle$$

and the divergent part

$$E_{L}^{(1)} = \frac{2\alpha}{3\pi m^{2}} \left(\int_{E_{h}}^{\Lambda} \frac{dk}{k} \right) \left\langle \mathbf{p} \left[H, \mathbf{p} \right] \right\rangle = \frac{\alpha}{3\pi m^{2}} \ln \frac{\Lambda}{E_{h}} \left(4\pi Z \alpha \left\langle \delta(\mathbf{r}) \right\rangle \right)$$

which results in appearance of the logarithmic term, the cut-of parameter is later canceled out by the logarithmic contribution from the high energy part. Here E_h is the Hartree energy and $E_h = m\alpha^2$.

イロン 不同 とくヨン イヨン 二日

Self-energy correction in the NRQED. High Energy

Let us consider the Darwin term in the NRQED Lagrangian

$$c_D \frac{e}{8m^2} [\mathbf{DE}]$$

For an electron the coefficients c_D is defined as follows

$$c_{D} = 1 + 2a_{e} + 8m^{2}F_{1}'(0)$$

= $1 + 2a_{e} + \frac{\alpha}{\pi} \frac{8}{3} \left[\ln\left(\frac{m}{2\Lambda}\right) + \frac{5}{6} - \frac{3}{8} \right] + \left(\frac{\alpha}{\pi}\right)^{2} A_{1}^{(2)} + \left(\frac{\alpha}{\pi}\right)^{3} A_{1}^{(3)},$

where a_e is the anomalous magnetic moment of an electron, Λ is a NRQED cutoff parameter.

Principles of NRQED Basic interactions and perturbation theory Leading order relativistic and radiative contributions

(a)

Self-energy correction in the NRQED. High energy.

Here we take the $m\alpha^5$ order contribution from the NRQED Lagrangian Darwin term:

$$\mathcal{E}_{H} = -\frac{c_{D}^{(5)}}{8m^{2}} 4\pi Z \alpha \left\langle \delta(\mathbf{r}) \right\rangle, \qquad c_{D}^{(5)} = 2\frac{\alpha}{2\pi} + \frac{\alpha}{\pi} \frac{8}{3} \left[\ln\left(\frac{m}{2\Lambda}\right) + \frac{5}{6} - \frac{3}{8} \right].$$

Then we get for the self-energy contribution for S states

$$E_{H} = \frac{\alpha}{3\pi m^{2}} \left[\ln \alpha^{-2} + \ln \frac{E_{h}}{\Lambda} - \ln 2 + \frac{5}{6} \right] 4\pi Z \alpha \langle \delta(\mathbf{r}) \rangle.$$

Summing up the E_L and E_H contributions we see that the cutoff parameter Λ cancels out and we've got a finite expression for the self-energy contribution.

Principles of NRQED Basic interactions and perturbation theory Leading order relativistic and radiative contributions

Э

Self-energy correction for a bound state

Replacing $E_h \rightarrow 2R_\infty$, we arrive at the well-known expression¹

$$\Delta E_{se} = \frac{4\alpha(Z\alpha)}{3m^2} \left[\ln \alpha^{-2} - \ln[k_0(n,l)/R_{\infty}] + \frac{5}{6} \right] \langle \psi | \delta(\mathbf{r}) | \psi \rangle + \frac{\alpha(Z\alpha)}{2\pi m^2} \left\langle \psi \left| \frac{\mathbf{r} \times \mathbf{p}}{r^3} \cdot \frac{\sigma}{2} \right| \psi \right\rangle.$$

where $\ln(k_0/R_{\infty})$ is the Bethe logarithm

$$\ln [k_0(n, l)/R_{\infty}] = \sum_n \frac{\mathbf{p}_{0n} \mathbf{p}_{n0} (E_n - E_0) \ln(|E_n - E_0|/R_{\infty})}{\mathbf{p}_{0n} \mathbf{p}_{n0} (E_n - E_0)},$$

¹H.A. Bethe and E.E. Salpeter, *Quantum mechanics of one- and two-electron atoms*, Plenum Publishing Co., New York, 1977.

Physics of exotic atoms Precision Spectroscopy of HD⁺

Applications Physics of exotic atoms

Physics of exotic atoms Precision Spectroscopy of HD⁺

Muon Catalysed Fusion

Cycle rate λa μ atom formation dμ λ., $\mu + \alpha + n$ tμ Transfer $(1 - \omega_{\rm e})$ Mesic Fusion $\lambda_{dt\mu}$ molecule formation dtμ w. $\mu \alpha + n$ Sticking

Muon Catalysis Fusion Cycle

Figure 1. The principal muon catalysis fusion cycle in a deuterium and tritium mixture.

Э

Reactions:

$$\begin{split} d+t &\longrightarrow {}^{4}\text{He} + n + 17,6 \text{ M} \text{>B}, \\ d+d &\longrightarrow {}^{3}\text{He} + n + 3,3 \text{ M} \text{>B}, \\ d+d &\longrightarrow t+p+4,0 \text{ M} \text{>B}, \\ p+d &\longrightarrow {}^{3}\text{He} + \gamma + 5,5 \text{ M} \text{>B}. \end{split}$$

Physics of exotic atoms Precision Spectroscopy of HD⁺

Antiprotonic Helium. Experiment of year 2010.

Figure 2 [Profiles of sub-Doppler two-photon resonances. a Doppler - and power-broadened profile of the single-photon resonance (S, 8) - 0(53, 33) of \$27, 83] of

[M. Hori et al. Nature 475, 484 (2011)]

Isotope	Transition	Transition frequency (MHz)			
	$(n, i) \rightarrow (n-2, i-2)$	Experiment	Theory		
p ⁴ He ⁺	(36, 34)→(34, 32)	1,522,107,062(4)(3)(2)	1,522,107,058.9(2.1)(0.3)		
^j ³ He ⁺	$(33, 32) \rightarrow (31, 30)$ $(35, 33) \rightarrow (33, 31)$	2,145,054,858(5)(5)(2) 1,553,643,100(7)(7)(3)	2,145,054,857.9(1.6)(0.3) 1,553,643,100.7(2.2)(0.2)		

Experimental values show respective total, statistical and systematic 1-s.d. errors in parentheses; theoretical values (ref. 3 and V.I. Korobov, personal communication) show respective uncertainties from uncalculated QED terms and numerical errors in parentheses.

 $A_r(e) = 0.0005485799091(7) [1.4 \times 10^{-9}]$

V.I. Korobov

NRQED

Physics of exotic atoms Precision Spectroscopy of HD⁺

Antiprotonic Helium in Russian Media

🖉 С Lenta.ru: Главн	ое: 💫 🖌 🛶 Lenta.ru: Прогресс: Физик 🗙 🔀 как сделать снимок экран 🛛 🌿 Как сде	лать снимок экран 🗙 💭
← → C fi	lenta.ru/news/2011/07/28/antiproton/	☆ 🔒 🛢 🚍
🐜 Lenta.ru 🐲 mj	/ homepage 👌 GISMETEO.RU 🚦 Google 🛛 Википедия 🖃 РФФИ Грант-экспр 🔒 Ян,	декс 🖸 Другие закладки
		A
Главное	28.07.2011, 14:46:17 Версия для <u>печати</u> <u>PDA/КПК</u>	Последние новости
ВРоссии	Антипротонный	17.10 18:48 Удальцова 17.10 19:13 Пивоваров
Политика	ученые использовали для	отпустили под подписку обвинил Мамонтова в
6.CCCP	pacote, doto cent	о невыезде искажении смысла
В мире		17.10 18:26 Организаторы
Америка	CALLER AND A CALLER AND A	выборов в КС заявили о 17.10 20:19 Посольство
Германия		сохранности денег США в стокгольме участников MMM возобновило работу
Экономика		после эвакуации
Финансы		проследят за митингами 17.10 19:59 В Сирии
<u>Бизнес</u>		оппозиции подбитый вертолет
Наприкимость		17.10 19:46 Госпума
APTO		одобрила законопроект
Мотор	<i>*</i>	об образовании
Преступность	Физики взвесили антипротоны в атомкулах	
Масс-медиа		Аутсайд
О высоком	I руппа ученых Масаки Хори (Masaki	Розовый жираф: Нобелевский успех закоренелого
Кино	нон) из института квантовой оптики общества макса планка провела	<u>двоечника и его мамы</u> Нынешний нобелевский лауреат сэр Джон Гёрдон.
Музыка	наноолее точное измерение массы антипротона, улучшив известное значение на несколько порядков. Исследователи в очередной раз	оказывается, был закоренелым двоечником.
Re:Аквариум	подтвердили, что массы протона и антипротона совпадают. Статья	Science: Dance Your Ph.D. Finalists Announced
Спорт	ученых появилась в журнале Nature, а ее краткое изложение приводит	объявленного престижным научным журналом,
Прогресс	physicsworld.com.	пытаются станцевать свою диссертацию.
Интернет	B	BBC News: Bloodhound land speed rocket test roars over Newouay
Технологии	В рамках исследования физики изучали так называемые атомкулы - окологии в кологии в разви в сотору и оприменение атомкулы -	Захватывающее видео подготовки к тесту аппарата
Игры	экзотические молекулы гелия, в которых один из электронов замещен значито отоном. Эти объекты, способные сиществовать несколько	Bloodhound, похожего скорее на ракету, чем на суперкар.
Оружие	микросекунд и получившие название антипротонного гелия были	New Scientist: Reality revealed: The ultimate fabric of the universe
Медицина	открыты в 1991 году японскими физиками.	NewScientist пытается за две с половиной минуты
Из жизни	· · · · · · · · · · · · · · · · · · ·	рассказать, из чего состоит реальность и приходит к

Physics of exotic atoms Precision Spectroscopy of HD⁺

Э

Modern status. Experiment

Masaki Hori et al. Science 354, 610 (2016)

 $m_{\bar{p}}/m_e = 1836.152\,6734(15) \ [8 \times 10^{-10}]$

Quantum Three-Body Problem Nonrelativistic QED Applications Precision Spectroscopy of HD⁺

Precision Spectroscopy of HD⁺

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Physics of exotic atoms Precision Spectroscopy of HD⁺

CODATA18 values and new experiments

The CODATA18 constants:

Rydberg constant	$R_{\infty} = 10973731.568160(21) \mathrm{m}^{-1}$	$1.2 \cdot 10^{-12}$
deuteron mass	$m_d = 2.013553212745(40)$ u	$2.0 \cdot 10^{-11}$
electron mass	$m_e = 5.48579909065(16)\cdot10^{-4}$ u	$2.9 \cdot 10^{-11}$

Electron-to-proton mass ratio:

	m_p/m_e	m_d/m_p
CODATA18	1836.15267343(11)	1.99900750139(10)
Blaum ¹	1836.152673358(55)	1.999007501228(59)
Myers ²	1836.152673435(55)	1.999007501274(38)

S. Rau *et al.* Nature **585**, 43 (2020).
 D.J. Fink, E.G. Myers. Phys. Rev. Lett. **124**, 013001 (2020).

Physics of exotic atoms Precision Spectroscopy of HD⁺

HD⁺. Theory and experiment

Theoretical and experimental spin-averaged transition frequencies (in kHz). CODATA18 values of fundamental constants were used in the calculations.

$(L, v) \rightarrow (L', v')$	theory	experiment
(0,0) ightarrow(1,0)	1314925752.932(19)	1314925752.910(17)
(0,0) ightarrow(1,1)	58 605 052 163.9(0.5)	58 605 052 164.24(86)
$(3,0) \rightarrow (3,9)$	415 264 925 502.8(3.3)	415 264 925 501.8(1.3)

	Quantum Three-Boo Nonrelati A	ly Problem vistic QED pplications	Physics of exotic atoms Precision Spectroscopy of HD ⁺				
Results							
Reduced mass $\mu = \frac{m_p m_d}{(m_p + m_d) m_e}$ inferred from the HD ⁺ ion spectroscopy							
			μ	_			
	CODATA18	1223.8	399 228 722(51)	_			
	(0,0) ightarrow (0,1)	1223.8	$399228743(16)_{exp}(17)_{th}$	_			
	(0,0) ightarrow (1,1)	1223.8	$399228707(17)_{exp}(17)_{th}$				
	(3 , 0) ightarrow (3 , 9)	1223.8	$399228730(04)_{exp}(17)_{th}$				
		1223.8	$399228730(04)_{exp}(17)_{th}$	_			
Relative und	certainty: $u_r(\mu) =$	= 1.4 × 1	10 ⁻¹¹ .	_			

▲□▶▲□▶▲≣▶▲≣▶ ■ のへで

	Quantum Three-Boo Nonrelati A	dy Problem ivistic QED opplications	Physics of exotic atoms Precision Spectroscopy of HD ⁺				
Results							
Reduced mass $\mu = \frac{m_p m_d}{(m_p + m_d)m_e}$ inferred from the HD ⁺ ion spectroscopy							
			μ				
	CODATA18	1223.8	99 228 722(51)				
	(0,0) ightarrow (0,1)	1223.8	$99228743(16)_{exp}(17)_{th}$				
	(0,0) ightarrow(1,1)	1223.8	$99228707(17)_{exp}(17)_{th}$				
	(3,0) ightarrow (3,9)	1223.8	$99228730(04)_{exp}(17)_{th}$				
		1223.8	99 228 730(04) _{exp} (17) _{th}				
Relative und	certainty: $u_r(\mu) =$	= 1.4 × 1	L0 ⁻¹¹ .				

Mass ratios from spectroscopy and Myers' experiment:

 $m_p/m_e = 1836.152673436(44), \qquad m_d/m_e = 3670.482967763(88),$

and the new CODATA22 value is $m_p/m_e = 1836.152673426(32)$.

Quantum Three-Body Problem Nonrelativistic QED Applications Precision Spectroscopy of HD⁺

Thank you for your attention!

メロト (日) (日) (日) (日) (日) (0)