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Variational Principle for bound states

We solve a stationary Schrödinger equation,

HΨ = EΨ,

We assume that Hamiltonian H is a selfadjoint operator in a Hilbert
space, which satisfies

H ≥ cI , (1)

where c is some constant, not necessarily positive.
Let us define a functional

Φ(Ψ) =
(Ψ,HΨ)

(Ψ,Ψ)
,

This functional is bound from below by c . Stationary points of the
functional (1) determine energies and WF of bound states.
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Exponential expansion

This basis has a long history, probably the first explicit formulation of the
method has been done by Power and Somorjai2

The wave function is taken in the form

ΨLM(r1, r2) =
∑

l1+l2=L or L+1

Cl1l2n Y l1l2
LM(r1, r2)e

−αnr1−βnr2−γnr12 ,

where αn, βn, and γn are randomly generated parameters:

αi =

[⌊
1

2
i(i + 1)

√
pα

⌋
(A2 − A1) + A1

]
+

+i

{[⌊
1

2
i(i + 1)

√
qα

⌋
(A′

2 − A′
1) + A′

1

]}
,

⌊x⌋ designates the fractional part of x , pα and qα are some prime
numbers. Parameters βi and γi are obtained in a similar way.

2J.D. Power and R.L. Somorjai, Phys. Rev. A 5 (1972) 2401
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Exponential expansion. Main properties

One of the merits of the method is a very high convergence rate (in
common).

Demerits of the method:

Fast degeneracy of the basis set with increase of the basis. In a
double precision arithmetics already for N ∼ 200 calculations become
unstable. That may be cured by the use of multiprecision packages,
which allows to work with arbitrary number of significant digits.

For the helium atom ground state for large N rate of convergence
become rapidly to slow down.

Slow convergence for systems with two heavy particles as H+
2 .
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Other examples

system E
4He+p̄ (L=34, v=1) Kino −2.996335432

Korobov −2.9963354479662700(5)

H+
2 (L=0, v=19) Moss −0.49973123063

Korobov −0.499731230655812(2)

The last example is of special interest since that is the last vibrational
S-state. The wave function of this state has 19 nodes(!), and a binding
energy is 3.390939346× 10−6 a.u., that is five orders less than the
binding energy of the ground state.
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Concept of NRQED

QED

LQED = ψ̄ [(i∂ − e A) γ −m]ψ − 1

4
FµνF

µν ,

⇓
Nonrelativistic QED

LNRQED

⇓
Effective Hamiltonian

Heff =
∑
i

P2
i

2mi
+ e2

∑
j>i

ZiZj

rij
+ higher order corrections

(Here Pi = pi + eA)
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Nonrelativistic QED Lagrangian

The Lagrangian for NRQED is built out nonrelativistic (two-component)
Pauli spinor fields ψ for each of the electron, positron, muon, proton, etc.
Photons are treated in the same fashion as in QED.

Leff = − 1
2 (E

2 − B2) + ψ∗
e

(
i∂t − eφ+ D2

2m + D4

8m3 + . . .
)
ψe

+ψ∗
e

(
cF

e
2mσB+ cD

e
8m2

[
DE
]
+ cS

e
8m2

{
σ ·[iD×E]

})
ψe

+ higher order terms + muon, proton, etc.

− d1
memℓ

(ψ∗
eσeψe)

(
ψ∗
ℓσℓψℓ

)
+ d2

memℓ
(ψ∗

eψe)
(
ψ∗
ℓψℓ

)
+ . . .

where D = ∇− ieA.
cD = 1 + 2κ+ α

π
8
3

[
ln
(

m
2Λ

)
+ 5

6
− 3

8

]
,

cS = 1 + 2κ,

cF = 1 + κ,

d1 = (Zα)2 2
m2

e−m2
ℓ
ln
(

me
mℓ

)
,

d2 = (Zα)2
{

7
3
−2 ln

(
m
2Λ

)
+ 2

m2
e−m2

ℓ

[
m2

e ln
(

mℓ
µ

)
−m2

ℓ ln
(

me
µ

)]}
.
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NRQED requirements

Requirements for the NRQED Lagrangian interaction terms:

Hermiticity;

Gauge invariance. We use covariant derivatives: D = ∇−ieA;

Parity. The Lagrangian should be parity even;

Time reversal. The Lagrangian should be even under time reversal
transformation.

Coupling constants are determined by requiring that predictions of
QED and NRQED agree to a desired order in (v/c);

Contributions from QED that involve relativistic loop momenta are
absorbed into NRQED in a form of various local interactions.
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Examples of basic interactions in NRQED. Vertices.

Coulomb ”dipole” A2

e −e
[
p′+p
2m

]
e2

[
δij

2m

]
p p′ p p′ p p′

Darwin’s Fermi’s spin–orbit
−e

[
1

8m2

]
q2 e

[
i

2m

]
(q×σ) e

[
i

4m2

]
(p′×p) · σ

p p′ p p′ p p′

Here q = p′−p is a transferred impulse of the particle.
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NRQED propagators
A natural choice of a gauge for the electromagnetic field is the Coulomb
gauge (kA = 0)

G 00 =
1

k2
, — the Coulomb photon propagator,

G ij =
δij − kikj/k2

k2 + iε
,

G 0i = G i0 = 0, i , j = 1, 2, 3.

— the transverse photon propagator,

For exchange photons k0 ≈ mα2 and

G ij ≈ − 1

k2

[
δij −

kikj
k2

]
.

Propagators for massive particles

1

E − p2/(2m) + iε
.
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Zero-order approximation and perturbation theory
Zero-order approximation is the nonrelativistic Hamiltonian

H0 =
∑
i

p2
i

2mi
+

e2

4π

∑
j>i

ZiZj

rij

Its Green’s function is defined as follows

K0(2, 1) = e−iH0(t2−t1), [i∂/∂t2 − H0(2)]K0(2, 1) = iδ(2, 1).

Let H = H0 + V , then we can expand K in increasing powers of V :

K(2, 1) = K0(2, 1) + K (1)(2, 1) + K (2)(2, 1) + . . .

For instantaneous interaction:

K (1)(2, 1) = −i

∫
K0(2, 3)V (3)K0(3, 1) dτ3,

p p′

For a transverse photon:

K (1)(2, 1) = −i

∫
K0(2, 4)V (4)G(4, 3)K0(4, 3)V (3)K0(3, 1)dτ3dτ4,

Functions V (3) and V (4) are some vertex functions of inter-
action with the electro-magnetic field.

p p− k

k

p
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Breit-Pauli Hamiltonian

q

p1

p2

p′1

p′2

q

p1

p2

p′1

p′2

q

p1

p2

p′1

p′2

e2
〈
i

∣∣∣∣ 1
q2

∣∣∣∣ f〉 −e2 c
(2)
D

〈
i

∣∣∣∣∣ 1
8m2

2

∣∣∣∣∣ f
〉

e2 c
(2)
S

〈
i

∣∣∣∣∣ iσ2[q×p2]

4m2
2
q2

∣∣∣∣∣ f
〉

q

p1

p2

p′1

p′2

q

p1

p2

p′1

p′2

q

p1

p2

p′1

p′2

−e2

〈
i

∣∣∣∣∣∣ pi1p
j
2

m1m2

 q2−qi qj

q4

 ∣∣∣∣∣∣ f
〉

e2 c
(2)
F

〈
i

∣∣∣∣∣ iσ2[q×p1]

2m1m2q
2

∣∣∣∣∣ f
〉

−e2 c
(1)
F

c
(2)
F

〈
i

∣∣∣∣∣ [q×σ1][q×σ2]

4m1m2q
2

∣∣∣∣∣ f
〉
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Electron self-energy. Low energy approximation

k < Λ

p

k

p′

We use a quasi-relativistic appro-
ximation to the self-energy contri-
bution

Γ(1) = ie2
∫

d4k

(2π)4
p+(p+k)

2m

× 1

E+k0−(p−k)2/2m

1

E+k0−(p′−k)2/2m

× p′+(p′+k)

2m

1

k2−λ2
min

(
δ
ij− k ik j

k2+λ2
min

)
.

k ≥ Λ

q

p

k

p′

In a limit of small q and taking
into account a new regularization
parameter Λ

Γν
(1)(p, p

′) = γ
ν α

3π

q2

m2

(
ln

mc

2Λ
− 3

8
+

5

6

)
+

i

2m

α

2π
σ
νµqµ,

σ
νµ =

i

2

(
γ
ν
γ
µ − γ

µ
γ
ν)

.
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Self-energy correction in the NRQED. Low energy.

k < Λ

The ultrasoft scale contribution may be expressed:

EL =
2α

3πm2

∫ Λ

0

k dk

〈
p

(
1

E0 − H − k

)
p

〉
− δm ⟨ψ0|ψ0⟩.

The integrand may be further rearranged using the operator identity

(E0−H−k)−1 = −1/k − 1

k2
(E0−H) +

1

k2

(E0 − H)2

E0−H−k

that results in

EL =
2α

3πm2

[
−
〈
p2
〉
Λ + ⟨p [H,p]⟩ ln Λ +

∫
dk

k

〈
p
(E0−H)2

E0−H−k
p

〉]
−δm ⟨ψ0|ψ0⟩.
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Self-energy correction in the NRQED. Low energy.

Thus, the remaining part may be split onto a finite nonlogarithmic
contribution

E
(0)
L =

2α

3πm2

∫ Eh

0

k dk

〈
p

(
1

E0 − H − k
+

1

k

)
p

〉
+

2α

3πm2

∫ ∞

Eh

dk

k

〈
p
(E0−H)2

E0−H−k
p

〉
and the divergent part

E
(1)
L =

2α

3πm2

(∫ Λ

Eh

dk

k

)〈
p [H,p]

〉
=

α

3πm2
ln

Λ

Eh

(
4πZα

〈
δ(r)

〉)
which results in appearance of the logarithmic term, the cut-of parameter
is later canceled out by the logarithmic contribution from the high energy
part. Here Eh is the Hartree energy and Eh = mα2.
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Self-energy correction in the NRQED. High Energy

Let us consider the Darwin term in the NRQED Lagrangian

cD
e

8m2

[
DE
]

For an electron the coefficients cD is defined as follows

cD = 1 + 2ae + 8m2F ′
1(0)

= 1+2ae+
α

π

8

3

[
ln
( m

2Λ

)
+
5

6
− 3

8

]
+
(α
π

)2
A
(2)
1 +

(α
π

)3
A
(3)
1 ,

where ae is the anomalous magnetic moment of an electron, Λ is a
NRQED cutoff parameter.
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Self-energy correction in the NRQED. High energy.

Here we take the mα5 order contribution from the NRQED Lagrangian
Darwin term:

EH = − c
(5)
D

8m2
4πZα

〈
δ(r)

〉
, c

(5)
D = 2

α

2π
+
α

π

8

3

[
ln
( m

2Λ

)
+

5

6
− 3

8

]
.

Then we get for the self-energy contribution for S states

EH =
α

3πm2

[
lnα−2 + ln

Eh

Λ
− ln 2 +

5

6

]
4πZα

〈
δ(r)

〉
.

Summing up the EL and EH contributions we see that the cutoff
parameter Λ cancels out and we’ve got a finite expression for the
self-energy contribution.
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Self-energy correction for a bound state

Replacing Eh → 2R∞, we arrive at the well-known expression1

∆Ese =
4α(Zα)

3m2

[
lnα−2 − ln[k0(n, l)/R∞] +

5

6

]
⟨ψ|δ(r)|ψ⟩

+
α(Zα)

2πm2

〈
ψ

∣∣∣∣ r × p

r3
· σ
2

∣∣∣∣ψ〉 .
where ln(k0/R∞) is the Bethe logarithm

ln [k0(n, l)/R∞] =
∑
n

p0npn0(En−E0) ln(|En−E0|/R∞)

p0npn0(En − E0)
,

1H.A. Bethe and E.E. Salpeter, Quantum mechanics of one– and two–electron
atoms, Plenum Publishing Co., New York, 1977.
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Muon Catalysed Fusion

Reactions:

Muon Catalysis Fusion Cycle
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Antiprotonic Helium. Experiment of year 2010.

[M. Hori et al. Nature 475, 484 (2011)]

Ar (e) = 0.000 548 579 909 1(7) [1.4×10−9]

V.I. Korobov NRQED



Quantum Three-Body Problem
Nonrelativistic QED

Applications

Physics of exotic atoms
Precision Spectroscopy of HD+

Antiprotonic Helium in Russian Media
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Modern status. Experiment

Masaki Hori et al. Science 354, 610 (2016)

mp̄/me = 1836.152 6734(15) [8×10−10]
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Precision Spectroscopy of HD+
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CODATA18 values and new experiments

The CODATA18 constants:

Rydberg constant R∞ = 10 973 731.568 160(21) m−1 1.2·10−12

deuteron mass md = 2.013 553 212 745(40) u 2.0·10−11

electron mass me = 5.485 799 090 65(16)·10−4 u 2.9·10−11

Electron-to-proton mass ratio:

mp/me md/mp

CODATA18 1836.15267343(11) 1.99900750139(10)
Blaum1 1836.152673358(55) 1.999007501228(59)
Myers2 1836.152673435(55) 1.999007501274(38)

1) S. Rau et al. Nature 585, 43 (2020).
2) D.J. Fink, E.G. Myers. Phys. Rev. Lett. 124, 013001 (2020).
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HD+. Theory and experiment

Theoretical and experimental spin-averaged transition frequencies (in
kHz). CODATA18 values of fundamental constants were used in the
calculations.

(L, v) → (L′, v ′) theory experiment
(0, 0) → (1, 0) 1 314 925 752.932(19) 1 314 925 752.910(17)
(0, 0) → (1, 1) 58 605 052 163.9(0.5) 58 605 052 164.24(86)
(3, 0) → (3, 9) 415 264 925 502.8(3.3) 415 264 925 501.8(1.3)
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Results

Reduced mass µ =
mpmd

(mp+md)me
inferred from the HD+ ion spectroscopy

µ
CODATA18 1223.899 228 722(51)

(0, 0) → (0, 1) 1223.899 228 743(16)exp(17)th
(0, 0) → (1, 1) 1223.899 228 707(17)exp(17)th
(3, 0) → (3, 9) 1223.899 228 730(04)exp(17)th

1223.899 228 730(04)exp(17)th

Relative uncertainty: ur (µ) = 1.4× 10−11.

Mass ratios from spectroscopy and Myers’ experiment:

mp/me = 1836.152673436(44), md/me = 3670.482967763(88),

and the new CODATA22 value is mp/me = 1836.152673426(32).
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Thank you for your attention!
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