Some new algorithms for Monte-Carlo event generators
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Motivation

Collider experiments




Generators'vs. Integrators

Integration with MC
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Additional task: to find f,q. global on [a,b].




Real world conditions

Integrand properties
e Matrix element squared is positive and analytic function

e Experimental cuts make integrand piecewise analytic

e Typical singularities are poles and branch-points outside of integration contour

Typical dimensions
e Born-level integral is from 1- to 3-dimensional for 2 — 2 processes.
e Each additional particle increases dimension by 3.

e Markov Chain Parton showers allow variable-dimension events
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Interval arithmetic approach




1D example
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1D example
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1D example
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1D example
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1D example

slow acc. rate= 30.6%
rej.rate=36.7%

fast acc.rate= 32.7%
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Mirroring technique
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Chebyshev change of variable




Symmetric and antisymmetric parts
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Symmetric and antisymmetric parts (sampling)
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Symmetric and antisymmetric parts (mirroring)
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Symmetric and antisymmetric parts (mirroring)
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§ Symmetrlze once more
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Symmetrize once more (generate)
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Fourier expansion J

g(t) = %+a1cost+a2c0s2t+a30053t+a4cos4t—|—a5cos5t+...,

Symmetrization J

g9(t) +g(r — 1)
g-i-(t) f

= %—|—agcos2t—|—a4cos4t—|—agcos6t+...,

7r
g+(t) +g+(§ —t) ao
g++(t) = 5 3+a4cos4t+a80058t+a1200812t+...,

Hadamar transofrm

g++(t) = g(t) + g1(t) + 92(t) + g3(?), g1(t) =g(m—t)/4
gr—(t) = g(t) + g1 (t) — g2(t) — gs(8), with gat) = g(= = 1) /4
g 1(t) = g(t) — 1 () + g2(t) — g3(t), 2

g (t) = g(t) — q1(t) — galt) + g5 (1) g5(t) =9 (5 + )/4




Conclusion
e Interval arithmetics allows construction of efficient MC generator
resolving global maximum problem.
e Adaptive algorithms based on interval arithmetic can be build

e Smoothness properties of integrand can be benefited by with Hadamar symmetrization.
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