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Statement of the problem: General BVP
The multichannel scattering problem on the whole interval z ∈ (−∞,∞)(

−I d2

dz2 + U(z) + Q(z) d
dz + dQ(z)

dz − 2E I
)

χ(i)(z) = 0. (1)

The asymptotic form of the coefficients at z = z± → ±∞
Let Q(z) = 0, and the V(z) matrix is constant or weakly dependent on the variable z in
the vicinity of the asymptotic regions z ≤ zmin and/or z ≥ zmax.

Matrix-solutions Φv (z):

Φv (z) =


{

Y(+)(z)Tv , z ≥ zmax,

X(+)(z) + X(−)(z)Rv , z ≤ zmin,
v =→,{

Y(−)(z) + Y(+)(z)Rv , z ≥ zmax,

X(−)(z)Tv , z ≤ zmin,
v =←,

(2)

where R→ of the dimension NL
o × NL

o and R← of the dimension NR
o × NR

o are the
reflection matrices, T→ of the dimension NR

o × NL
o and T← of dimension NL

o × NR
o are

the transmission matrices.
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Components of asymptotic boundary conditions for constant matrices

The asymptotic rectangle-matrix functions X(±)(z) and Y(±)(z)

X(±)
io (z)→

exp
(
±ıpL

io z
)√

pL
io

ΨL
io , pL

io =
√

2E − λL
io , z ≤ zmin,

Y(±)
io (z)→

exp
(
±ıpR

io z
)√

pR
io

ΨR
io , pR

io =
√

2E − λR
io , z ≥ zmax. (3)

Here λL,R
i and ΨL,R

i = {ΨL,R
1i , . . . ,Ψ

L,R
Ni }

T are the solutions of algebraic eigenvalue
problems with the matrices VL = V (zmin) and VR = V (zmax) of the dimension N × N for
entangled channels

VL,RΨL,R
i = λL,R

i ΨL,R
i , (ΨL,R

i )T ΨL,R
j = δij . (4)

The closed channels asymptotic vector solutions at λL,R
ic ≥ 2E , i = ic = NL,R

o + 1, . . . ,N,
are as follows:

X(−)
ic (z)→ exp

(
+
√
λL

ic − 2Ez
)

ΨL
ic , z ≤ zmin, v =←,

Y(+)
ic (z)→ exp

(
−
√
λR

ic − 2Ez
)

ΨR
ic , z ≥ zmax, v =→ . (5)
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The asymptotic boundary conditions for Coulomb potential

The asymptotic of V(z) and Q(z) matrices

Vij (z) =
(
εL

j +
2Z L

j

z

)
δij + O(z−l ), l > 1, Qij (z) = O(z−l ), l ≥ 1, z ≤ zmin, (6)

and/or

Vij (z) =
(
εR

j +
2Z R

j

z

)
δij + O(z−l ), l > 1, Qij (z) = O(z−l ), l ≥ 1, z ≥ zmax.(7)

We put V L
ij = εL

i δij and/or V R
ij = εR

i δij ,

VL,RΨL,R
i = λL,R

i ΨL,R
i , (ΨL,R

i )T ΨL,R
j = δij , (8)

and the eigenvalues λL
i and/or λR

i are ordered in ascending order of the thresholds εL
i

and/or εR
i , and the corresponding eigenvectors ΨL

i and/or ΨR
i are columns of the

permutated unit matrix I.
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The asymptotic boundary conditions for non constant matrices

The open and closed channel asymptotic vector solutions have the form:

X(±)
io (z)→

exp
(
±ı
(

pL
io z − ZL

j
pio

ln(2pL
io |z|)

))
√

pL
io

ΨL
io , pL

io =
√

2E − λL
io , z ≤ zmin,

X(−)
ic (z)→ exp

(
+
(

pL
ic z +

Z L
j

pic
ln(2pL

ic |z|)
))

ΨL
ic , pL

ic =
√
λL

ic − 2E , (9)

and/or

Y(±)
io (z)→

exp
(
±ı
(

pR
io z − ZR

j
pio

ln(2pR
io |z|)

))
√

pR
io

ΨR
io , pR

io =
√

2E − λR
io , z ≥ zmax,

Y(+)
ic (z)→ exp

(
−
(

pR
ic z +

Z R
j

pic
ln(2pR

ic |z|)
))

ΨR
ic , pR

ic =
√
λR

ic − 2E , (10)

where j is the element number of the eigenvector ΨL
i and/or ΨR

i , which is 1.
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The program KANTBP 3.1 – KANTorovich Boundary Problem

Methods
BVP is solved on non-uniform grids using FEM and R-matrix theory. The KANTBP 3.1
program has been created.
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A FORTRAN program for calculating energy values, reflection and transmission matrices, and correspond-
ing wave functions in a coupled-channel approximation of the adiabatic approach is presented. In this 
approach, a multidimensional Schrödinger equation is reduced to a system of the coupled second-order 
ordinary differential equations on a finite interval with the homogeneous boundary conditions of the 
third type at left- and right-boundary points for the discrete spectrum and scattering problems. The re-
sulting system of such equations, containing potential matrix elements and first-derivative coupling terms 
is solved using high-order accuracy approximations of the finite element method. The scattering problem 
is solved with non-diagonal potential matrix elements in the left and/or right asymptotic regions and 
different left and right threshold values. Benchmark calculations for the fusion cross sections of 36S+48Ca, 
64Ni+100Mo reactions are presented. As a test desk, the program is applied to the calculation of the re-
flection and transmission matrices and corresponding wave functions of the exact solvable wave-guide 
model, and also the fusion cross sections and mean angular momenta of the 16O+144Sm reaction.

Program summary
Program Title: KANTBP
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Licensing provisions: CC BY NC 3.0
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Nature of problem: In the adiabatic approach [1], a multidimensional Schrödinger equation for quantum 
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field [3–6], the three-dimensional tunneling of a diatomic molecule incident upon a potential barrier [7], 
wave-guide models [8], the fusion model of the collision of heavy ions [9–11], and low-energy fusion 
reactions of light- and medium mass nuclei [12] is reduced by separating the longitudinal coordinate, 
labeled as z, from transversal variables to a system of second-order ordinary differential equations con-
taining the potential matrix elements and first-derivative coupling terms. The purpose of this paper is to 
present a program based on the use of high-order accuracy approximations of the finite element method 
(FEM) for calculating energy levels, reflection and transmission matrices and wave functions for such sys-
tems of coupled-channel second order differential equations (CCSODEs) on finite intervals of the variable 
z ∈ [zmin, zmax] with homogeneous boundary conditions of the third-type at the left- and right-boundary 
points, which follow from the discrete spectrum and scattering problems.
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Application in nuclear physics

Sub-barrier heavy ion fusion reaction a

aP.W. Wen, O. Chuluunbaatar, A.A. Gusev, et al, Near-barrier heavy-ion fusion: Role of
boundary conditions in coupling of channels, Phys. Rev. C 101,014618 (2020)

N∑
n′=1

((
− d2

dr 2 − Ẽ
)
δnn′ +Unn′ (r)

)
ψn′no (r)=0, r ∈ (rmin, rmax). (11)

Unn′ (r) = 2µ
~2

[(
l(l + 1)~2

2µr 2 + V (0)
N (r) + ZPZT e2

r + εn

)
δnn′ + Vnn′ (r)

]
. (12)

Here Ẽ = 2µE/~2 is the center-of-mass energy, µ = APAT/(AP + AT ) is the reduced
mass of the target and the projectile with the masses AT and AP and the charges ZT and
ZP , respectively. Vnn′ (r) are matrix elements of Coulomb and nuclear V (0)

N (r)
(Woods-Saxon potential derived from Akyüz-Winther parameterization) potentials,
Unn′ (r →∞) = 2µεn/~2δnn′ .
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Application in nuclear physics

Fusion cross sections:a IWBC at rmin � 0
aK. Hagino, N. Rowley, A.T. Kruppa, CCFULL..., Comput. Phys. Commun. 123 (1999) 143.

Vl (r) = l(l + 1)
r 2

+ 2µ
~2

(
V (0)

N (r) + ZPZT e2

r

)
,

Ẽ > V min
l = Vl (r l

min)

σf (E) =
lmax(E)∑

l=1

Pl ,

Pl = π

Ẽ
(2l + 1)

NL
o∑

m=1

|T(l)
m1|

2.
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Application in nuclear physics

Fusion cross sections for 64Ni+100Mo and 36S+48Ca
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method in the CCFULL (dashed green line) and KANTBP (solid red line). NR
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Application in nuclear physics
Comparison of the left boundary conditions

CCFULL: X (−)
jio (rmin) = exp(−ıqj (rmin)r)δjio , qj (rmin) =

√
Ẽ − Ujj (rmin) (13)

KANTBP: X(−)
io (rmin) = exp

(
−ıpL

io rmin
)

ΨL
io , pL

io =
√

2E − λL
io , (14)
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Application in nuclear physics

Fission reaction 40Ca+208Pb leading to the formation of the nucleus 248No
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Figure 5: KANTBP (solid), NRV
[http://nrv.jinr.ru/nrv] (dashed) and CCFULL
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Experimental study of fast fission and quasifission in the 40Ca + 208Pb reaction leading
to the formation of the transfermium nucleus 248No
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Background: The stability of the transfermium nucleus against fission is mainly determined by the shell
correction depending on its angular momentum and excitation energy.
Purpose: The study of the fast fission process of the transfermium nucleus 248No and its dependence on the
interaction energy and introduced angular momentum.
Methods: Mass-energy distributions of the 248No fission fragments formed in the 40Ca + 208Pb reaction at
energies above the Coulomb barrier have been measured using the double-arm time-of-flight spectrometer
CORSET at the 40Ca-beam energies of 223, 250, and 284 MeV.
Results: The contribution of the fast fission process is determined from the calculations of the driving potential,
taking into account shell effects and rotational energy and amounts to 39% and 61% at 250 and 284 MeV,
respectively. The mass-energy distributions of the quasifission and fast fission fragments have been extracted
by subtracting the mass-energy matrices associated with compound nucleus fission from those of all measured
fissionlike events. The asymmetric fragments with masses 97 and 151 u were found to be the most probable in
the fast fission of 248No. With increasing 40Ca energy from 250 to 284 MeV the mass distributions of the fast
fission fragments change slightly.
Conclusions: Contrary to quasifission in which the fragments are focused mainly around the closed neutron or
proton shells, the influence of known proton or neutron shells on the asymmetric mass distribution in the fast
fission process was not observed.

DOI: 10.1103/PhysRevC.105.024617

I. INTRODUCTION

The fusion of heavy nuclei is a complex process in which
a total rearrangement of the colliding nuclei structure occurs
and they lose completely their individuality forming an ex-
cited compound nucleus (CN). Interest to fusion reactions has
not waned for many years since this process is one of the ways
to synthesize and study the properties of nuclei. At present the
complete fusion reactions is the only “working” method for
producing the superheavy elements [1].

In the interaction of heavy nuclei, the complete fusion
process competes with other possible reaction channels, such
as deep inelastic scattering, quasifission, and fast fission [2].
The separation of various processes from the total reaction
cross section is a long-standing and extremely important task
in the physics of nuclear reactions with heavy ions. In the
past two decades significant progress was achieved in solving
this problem experimentally and theoretically [3–6]. The total
cross section of all reaction channels characterized by large
energy dissipation and nucleon transfer is usually divided

into the cross section of deep inelastic collisions and the
capture cross section. The capture process is possible only
when the introduced angular momentum l is lower than the
critical value Lcr at which the interaction energy is equal to
the effective barrier defined as a sum of the interaction barrier
and centrifugal energy of the system [2].

The compound nucleus has an excitation energy defined as
E∗

CN = Ec.m. + QCN, where Ec.m. is the energy in the center-
of-mass (c.m.) system, QCN is the mass difference of the
formed CN and the interacting nuclei. The excited CN can
undergo fission or cool down due to the evaporation of light
particles (neutrons, protons, and α particles) and the emission
of γ quanta. Thus, the fusion cross section is the sum of the
evaporation residues (ERs) formation cross section σER, i.e.,
the process in which the nucleus survives against fission, and
the fission cross section σfis. The competition between survival
and fission processes is determined, first of all, by the differ-
ence between the fission barrier B f and the neutron binding
energy Bn. In the reactions with heavy ions, the introduced
angular momentum can reach quite large values of ∼100h̄

2469-9985/2022/105(2)/024617(11) 024617-1 ©2022 American Physical Society
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FIG. 1. The fusion probability (lines) as a function of the exci-
tation energy of the compound nuclei formed in the 40Ca + 208Pb,
48Ca + 208Pb, and 44Ca + 206Pb reactions, calculated using Eqs. (2)
and (3). The circles and the squares are the experimentally estimated
fusion probabilities for the 48Ca + 208Pb [19] and 44Ca + 206Pb [18]
reactions.

the mean fissility parameter xm [25],

P0 = 1

1 + exp
[ xm−0.776

0.0067

] . (2)

The fusion probability also depends on the interaction en-
ergy [4],

PCN(E∗, l ) = P0

1 + exp
[E∗

B−E∗
int (l )

�

] , (3)

where E∗
B is the excitation energy of the CN at the beam en-

ergy in the c.m. system equal to the Bass barrier [24], E∗
int (l ) =

Ec.m. + Q − Erot (l ) is the “internal” excitation energy, which
also determines the attenuation of the shell correction to the
fission barrier of the CN; � is the adjustable parameter.

Figure 1 shows the dependence of the fusion probability
on the CN excitation energy calculated using Eqs. (2) and
(3) for the reaction under study as well as for the similar
systems 44Ca + 206Pb and 48Ca + 208Pb for which the fusion
probability was obtained from the analysis of mass energy and
angular distributions [18,19]. The experimentally estimated
probabilities agree well with the dependence proposed by Za-
grebaev and Greiner [4]. Despite the Coulomb factor of these
three reactions is the same, the mean fissility parameter is
different: xm = 0.723 for the 48Ca + 208Pb reaction, 0.741 for
44Ca + 206Pb, and 0.759 for 40Ca + 208Pb. The contribution of
the QF process increases with an increase in the mean fissility
parameter.

The experimentally estimated values of PCN are in agree-
ment with the calculated results, except the lowest-energy
point for 48Ca + 208Pb [19] at which the experimental value
is two times higher than the calculated one. The mass-
angular distributions of binary fragments formed in the
40,44,48Ca + 204,208Pb reactions measured by ANU group [20]

also indicate the lower contribution of the QF process in the
48Ca + 208Pb reaction at energies near the Coulomb barrier.
It was supposed that the QF yield depends on the number of
neutron and proton shells in the reaction entrance channel: the
more magic numbers, the higher the probability of a complete
fusion of the nuclei. However, this does not explain such a
large difference in the contributions of the QF process in the
40,48Ca + 208Pb reactions since in both reactions all the part-
ners are doubly magic nuclei. The difference between 48Ca
and 40Ca is in the presence of a neutron skin in the case of
48Ca. For this nucleus the rn-rp is about 0.14–0.20 fm (for
40Ca it is about zero) [26,27]. The neutron skin changes the
balance between the nuclear and the Coulomb forces in the
entrance channel and may lead to an increase in the fusion
probability. Note that the heaviest superheavy elements were
produced in the reactions with neutron-rich 48Ca. The influ-
ence of the neutron skin on the nuclear interaction mechanism
is expected to be more pronounced at the near-barrier energies
where the minimal contribution of the QF was found. With
increasing incident energy, the effect of the skin decreases and
the QF contribution increases. For the reaction with 48Ca [21]
at energies above the barrier the forward-backward asymmet-
ric QF component appears in the mass-angular distributions
similarly to the 40Ca-induced reaction.

Figure 1 shows that as expected the probability of fusion
decreases at the transition from 48Ca + 208Pb to 44Ca + 206Pb.
Thus, to estimate the QF cross section in the 40Ca + 208Pb
reaction we can use the following relation:

σQF = σcap[1 − PCN(Ec.m., l )]. (4)

The capture cross sections, partial cross sections, and crit-
ical angular momenta Lcr were calculated using the code of
coupling channel model KANTBP [28]. The advantage of this
code, compared to the widely used codes of NRV [29,30] and
CCFULL [31], is the careful treating of boundary conditions for
solving the set of coupled Schrödinger equations. It allows one
to keep a high accuracy of calculations that take into account
a large number of coupled channels.

The ER cross section in the studied reaction is expected to
be several orders of magnitude smaller than the cross section
of the CN fission [32], so this process was not considered in
this analysis.

Since the fission barrier of 248No is determined mainly by
the shell correction, the angular momentum must be calcu-
lated taking into account the influence of the CN temperature
on the value of δU . The dependence of the fission barrier
height on the temperature and angular momentum was deter-
mined in the calculations of the driving potential taking into
account shell effects and rotational energy as

F (q, T, l ) = Vmac-mic(q) + Erot (q, l ) − a(q)T 2, (5)

where Vmac-mic(q) is the macroscopic-microscopic potential, T
is the nuclear temperature, a(q) is the level-density parameter
[33], and q is a set of collective degrees of freedom of the sys-
tem. Rotational energy Erot (q, l ) = h̄2l (l + 1)/2J⊥(q), where
J⊥(q) is a rigid body moment of inertia.

024617-3
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Application in nuclear physics

Optical potentials and regular BC: ψnm(r) ∼ r l+1 at rmin = 0

Vl (r) = l(l + 1)
r 2

+ 2µ
~2

(
<Ṽ (0)

N (r) + ZPZT e2

r

)
,

Ẽ > V min
l = Vl (r l

min)

Ṽ (0)
N (r) = V (0)

N (r) + ıW (0)
N (r) (15)

σf (E) =
lmax(E)∑

l=1

Pl ,

Pl = π

Ẽ
(2l + 1)

NL
o∑

m=1

(1− |R(l)
m1|

2),

(16)

0 5 10 15 20 25 30
-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

16O+44Ca
l=0

r

 Re U11

 Im U11

 Re U22

 Im U22

 Re U21

 Im U21

Figure 7:

Chuluunbaatar (MAS, JINR) Application of the KANTBP 3.1 program 13 / 18



Application in nuclear physics

Cross sections of light reaction 16O+44Ca
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R-matrix – P. Descouvemont, Comput. Phys. Commun. 200 (2016) 199.
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Application in nuclear physics
Cross sections of heavy reaction 48Ca+248Cm
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as a function of Lmax at deep sub-barrier
energy Ecm = 172 MeV.
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Figure 11: Upper panel: the back-angle QE
cross section relative to the Rutherford cross
section. Lower panel: the corresponding barrier
distributions. The extra symbol ’-T’ denotes
the extra consideration of the transfer channels
in the CC calculation.
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Application in nuclear physics

The Numerov method requires two initial conditions

φ(ri ) =
(

1− h2

12 A(ri )
)
ψ(ri )

φ(ri+1) =

((
h2
√

12
A(ri ) +

√
3
)2

− 1

)
φ(ri )− φ(ri−1) (17)

Ann′ (r) = 2µ
~2

[(
l(l + 1)~2

2µr 2 + V (0)
N (r) + ZPZT e2

r + εn − E
)
δnn′ + Vnn′ (r)

]
ri+1 = ri + h
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Application in nuclear physics
Numerov method in CCFULL
c integration of the io-th channel wave function from rmin = 0

do 15 io=1,nlevel
do 200 j1=1,nlevel

psi0(j1)=0.d0
psi1(j1)=0.d0

200 continue
c initial conditions

psi1(io)=1.d-6
do 91 i0=1,nlevel

xi1(i0,io)=(1.d0-fac/12.d0*(v(rmin+dr)-ai*w(rmin+dr)-e))*psi1(i0)
do 92 ic=1,nlevel

xi1(i0,io)=xi1(i0,io)
-fac/12.d0*(cpot(i0,ic,1)-ai*cpotw(i0,ic,1))*psi1(ic)

92 continue
91 continue
15 continue

Initial conditions in CCFULL:

ψij (0) = 0 is correct but ψij (h) = 10−6δij is not correct (18)
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Conclusions

1. A FORTRAN program for calculating energy values, reflection and transmission
matrices, and corresponding wave functions in a coupled-channel approximation of the
adiabatic approach are presented in Computer Physics Communications Program Library.

2. We found that the R-matrix method and the finite element method (KANTBP) are
more stable for solving the multichannel scattering problem for the coupled channels
equations compared to the Numerov method.

3. The programs KANTBP and R-matrix excellently confirm each other and outperform
the CCFULL program.

Thank you for attention!
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