Introduction Boundary value problem Stability analysis Numerical results

 ϕ^4 oscillons as standing waves in a ball: a numerical study

Summarv

E.V. Zemlyanaya^{1,2}, A.A. Bogolubskaya¹, N.V. Alexeeva³, I.V. Barashenkov^{1,3}, M.V. Bashashin^{1,2}

Joint Institute for Nuclear Research, Dubna, Russia
² Dubna State University, Dubna, Russia
³ Contro for Theoretical and Mathematical Physics

³ Centre for Theoretical and Mathematical Physics, University of Cape Town, South Africa

MMCP'2024, Yerevan, Armenia, 20-26 Oct 2024

E.V.Zemlyanaya, A.A.Bogolubskaya, N.V.Alexeeva, I.V.Barashenkov, M.V.Bashashin,

Introduction ●00	Boundary value problem	Stability analysis	Numerical results	Summary

Equation

We consider the ϕ^4 equation

$$\Phi_{tt} - \Delta \Phi - \Phi + \Phi^3 = 0, \quad \Delta = \frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr}$$
(1)

which has a number of physical and mathematical applications.

Localized long-lived pulsating states (pulsons, oscillons) in the three-dimensional ϕ^4 theory are of special interest within a wide range of cosmological and high-energy physics contexts.

The <u>earliest</u> observations of repeated expansions and contractions of spherically-symmetric vacuum domains in the ϕ^4 equation were obtained in:

Voronov, Kobzarev, Konyukhova, JETP Lett 22 290 (1975).

E.V.Zemlyanaya, A.A.Bogolubskaya, N.V.Alexeeva, I.V.Barashenkov, M.V.Bashashin,

Introduction ○●○	Boundary value problem	Stability analysis 000	Numerical results 0000	Summar 00
Simulatio	ns			

Computer simulations revealed the formation of long-lived pulsating structures of large amplitude and nearly unchanging width

Bogolyubskii & Makhankov, JETP Lett **24** 12 (1976) Bogolyubskii & Makhankov, JETP Lett **25** 107 (1977)

Example of numerical simulations of pulsating solution of Eq.(1)

E.V.Zemlyanaya, A.A.Bogolubskaya, N.V.Alexeeva, I.V.Barashenkov, M.V.Bashashin,

Introduction ○○●	Boundary value problem	Stability analysis	Numerical results	Summary

Aim & approach

- With their permanent loss of energy to the second-harmonic radiation, the oscillons are not exactly time-periodic.
- These infinite-space solutions can be studied via their approximation by standing waves in a ball of a finite radius.
- Unlike oscillons, the standing waves are exactly periodic and can be determined as solutions of a boundary-value problem on the cylindrical surface.
- Thus, our study aims an understanding of structure and properties of the oscillon by examining the periodic standing wave in a ball of finite radius *R*.

 N.Alexeeva, I.Barashenkov, A.Bogolubskaya, E.Zemlyanaya // Phys Rev D 107 (2023) 076023;

 E.Zemlyanayaa, A.Bogolubskayaa, M.Bashashin, N.Alexeeva. Phys. Part. Nucl. 55 No. 3 (2024) 505-508;

- E.Zemlyanaya, A.Bogolubskaya, N.Alexeeva M.Bashashin // Discrete & Contin. Models and Appl. Comput. Sci. **32** No. 1 (2024) 106-111

naa

E.V.Zemlyanaya, A.A.Bogolubskaya, N.V.Alexeeva, I.V.Barashenkov, M.V.Bashashin,

Intro	du	cti	on	

Boundary value problem ●○○ Stability analysis

Numerical results

Summary

Boundary value problem

We consider the following boundary value problem:

$$\phi_{tt} - \phi_{rr} - \frac{2}{r}\phi_r + 2\phi - 3\phi^2 + \phi^3 = 0, \qquad (2a)$$

$$\phi_r(0,t) = 0, \quad \phi(R,t) = 0, \quad \phi(r,T) = \phi(r,0).$$
 (2b)

- Dependence of structure and properties of standing waves on the radius *R* and period *T* is numerically investigated.
- Numerical approach is based on numerical continuation and stability analysis of solutions of a 2D boundary value problem for the corresponding nonlinear PDE on the domain [0, T]×[0, R] where T – period of oscillations.
- Stability analysis is based on the Floquet theory.

E.V.Zemlyanaya, A.A.Bogolubskaya, N.V.Alexeeva, I.V.Barashenkov, M.V.Bashashin,

Introduction	Boundary value problem ⊙●⊙	Stability analysis	Numerical results	Summary

Energy and frequency

The periodic standing waves are characterised by their energy

$$E = 4\pi \int_0^R \left(\frac{\phi_t^2}{2} + \frac{\phi_r^2}{2} + \phi^2 - \phi^3 + \frac{\phi^4}{4} \right) r^2 dr$$
(3)

and frequency

$$\omega = \frac{2\pi}{T}.$$
 (4)

If the solution with frequency ω does not change appreciably as R is increased — in particular, if the energy (3) does not change – this standing wave provides a fairly accurate approximation for the periodic solution in an infinite space.

We analyse the boundary-value problem (2) and construct the E(R) and the $E(\omega/\omega_0)$ dependence (where $\omega_0 = \sqrt{2}$).

E.V.Zemlyanaya, A.A.Bogolubskaya, N.V.Alexeeva, I.V.Barashenkov, M.V.Bashashin,

Introduction	Boundary value problem ○○●	Stability analysis	Numerical results	Summary 00

Numerical approach

Letting $\tau = t/T$ and defining $\psi(r, \tau) = \phi(r, t)$ yields the boundary value problem at 2D domain $[0,1] \times [0,R]$:

$$\psi_{tt} + T^2 \cdot \left[-\psi_{rr} - \frac{2}{r}\psi_r + 2\psi - 3\psi^2 + \psi^3\right] = 0,$$
 (5a)

$$\psi_r(0,t) = \psi(R,t) = 0, \quad \psi(r,1) = \psi(r,0).$$
 (5b)

- Solutions of Eq.(5) were numerically continued in T and R to construct the energy diagram.
- For each values *T* and *R* the boundary-value problem (5) was solved by means of the Newtonian iteration with the 4th order finite difference approximation of the derivatives.
- Initial guess for the Newtonian process was calculated using the results at two previous continuation steps.

E.V.Zemlyanaya, A.A.Bogolubskaya, N.V.Alexeeva, I.V.Barashenkov, M.V.Bashashin,

Introduction	Boundary value problem	Stability analysis ●○○	Numerical results	Summary

Stability analysis

To classify the stability of the resulting standing waves against spherically-symmetric perturbations we considered the linearised equation $y_{tt} - y_{rr} - \frac{2}{r}y_r - y + 3(\phi - 1)^2y = 0$ (6)

with the boundary conditions $y_r(0, t) = y(R, t) = 0$. We expand y(r, t) in the sine Fourier series, substitute the expansion to Eq. (6) and, after transformations, finally obtain a system of 2N ODEs wrt unknown time-dependent Fourier coefficients:

$$\dot{v}_m = v_m, \qquad \dot{v}_m + \mathcal{F} = 0,$$
 (7)

$$\mathcal{F} = (2+k_m^2)u_m - 3\sum_{n=1}^N (A_{m-n} - A_{m+n})u_n + \frac{3}{2}\sum_{n=1}^N (A_{m-n} - A_{m+n})u_n,$$

 $A_n, B_n \text{ are periodic functions of } t, \text{ with period } T:$ $A_n(t) = \frac{2}{R} \int_0^R \phi(r, t) \cos(k_n r) dr, \quad B_n(t) = \frac{2}{R} \int_0^R \phi^2(r, t) \cos(k_n r) dr$

E.V.Zemlyanaya, A.A.Bogolubskaya, N.V.Alexeeva, I.V.Barashenkov, M.V.Bashashin,

Calculation of Floquet multiplyers

The system (7) is solved, numerically, 2N times with series of varied initial conditions at the time-interval [0, T] in order to form a matrix M_T . Eigenvalues $\mu = \exp(\lambda T)$ of M_T are the Floquet multipliers. The solution $\phi(r, t)$ is deemed stable if all its Floquet multipliers lie on the unit circle $|\zeta| = 1$ and unstable if there are multipliers outside the circle.

Floquet multipliers at the ($\text{Re}\mu$, $\text{Im}\mu$) plane. Stability case: T=4.7206, instability case: T=5.025. Here R=100.

nan

E.V.Zemlyanaya, A.A.Bogolubskaya, N.V.Alexeeva, I.V.Barashenkov, M.V.Bashashin,

Summary

Numerical approach, parallel implementation

Parallel MATLAB implementation:

- The *ode45* procedure for numerical solution of the initial value problem (8) with the tolerance parameter value 10⁻⁷;
- Cubic spline interpolation for $A_{m\pm n}$ and $B_{m\pm n}$ coefficients for a set of time points.
- Operator parfor to provide parallel numerical solution of 2N Cauchy problems into available parallel threads, or "workers".

E.V.Zemlyanaya, A.A.Bogolubskaya, N.V.Alexeeva, I.V.Barashenkov, M.V.Bashashin,

Energy-frequency diagram

- The branch of ϕ comes from E=0 at Ω_1 .
- Continuation produces curve E(ω/ω₀) with a sequence of spikes; number and positions of spikes are R-sensitive.
- The lower envelope E-curve does not depend on R; it has a single minimum for all values of R, ω_{min}=ω/ω₀=0.967, E_{min}=42.74.
- Stability occur only in case of frequencies lower ω_{min} .

E.V.Zemlyanaya, A.A.Bogolubskaya, N.V.Alexeeva, I.V.Barashenkov, M.V.Bashashin,

Summary

Two co-existing types of standing waves

- Bessel-like waves without explicitly localized core, which are branching off the zero solution and decaying in proportion to r^{-1} as $r \rightarrow R$.
- Nonlinear standing wave in a ball with an exponentially localised pulsating core and a small-amplitude slowly decaying second-harmonic tail.

E.V.Zemlyanaya, A.A.Bogolubskaya, N.V.Alexeeva, I.V.Barashenkov, M.V.Bashashin,

Stability analysis

Numerical results

Summary

E(R) diagram at several values of T: periodicity & stability properties

E.V.Zemlyanaya, A.A.Bogolubskaya, N.V.Alexeeva, I.V.Barashenkov, M.V.Bashashin,

Stability analysis

Numerical results

Summary

Interconnection of branches in case T=4.8 (left); Minimal *E* of stable waves vs *T* (right)

- blue solid: "standard" wave
- blue dashed: Bessel-like wave
- magenta: stable intervals

E.V.Zemlyanaya, A.A.Bogolubskaya, N.V.Alexeeva, I.V.Barashenkov, M.V.Bashashin,

Introduction	Boundary value problem	Stability analysis	Numerical results 0000	Summary ●○
~				

- *R*-periodicity of structure and stability properties of φ⁴ standing waves is shown. Distance between *E*-peaks is *T*-dependent.
 - Regions of stability on the E(R) diagram are localized at the foot of the right slopes of the energy peaks.
 - Both slopes of the E(R) peak join the branch of Bessel-like waves at the period-doubling bifurcation points.
 - Bessel-like waves are stable at the region between E = 0 and the period-doubling bifurcation point.
 - One expects that for each ω/ω₀ < ω_{min}, there is an equidistant sequence of R where the standing waves are stable.
 - We obtained that minimal *E* at which the standing wave can be stable increases with decreasing frequency. This hypothesis needs to be checked at low frequencies.

E.V.Zemlyanaya, A.A.Bogolubskaya, N.V.Alexeeva, I.V.Barashenkov, M.V.Bashashin,

 ϕ^4 oscillons as standing waves in a ball: a numerical study

Summary

Introduction

Boundary value problem

Stability analysis

Numerical results

Summary ○●

The work is supported by the UCT/RSA – JINR Scientific Cooperation Program. We thank the HybriLIT team for the help with organization of calculations at the JINR Multifunctional Information Computing Center.

THANK YOU FOR YOUR ATTENTION!

E.V.Zemlyanaya, A.A.Bogolubskaya, N.V.Alexeeva, I.V.Barashenkov, M.V.Bashashin, ϕ^4 oscillons as standing waves in a ball: a numerical study