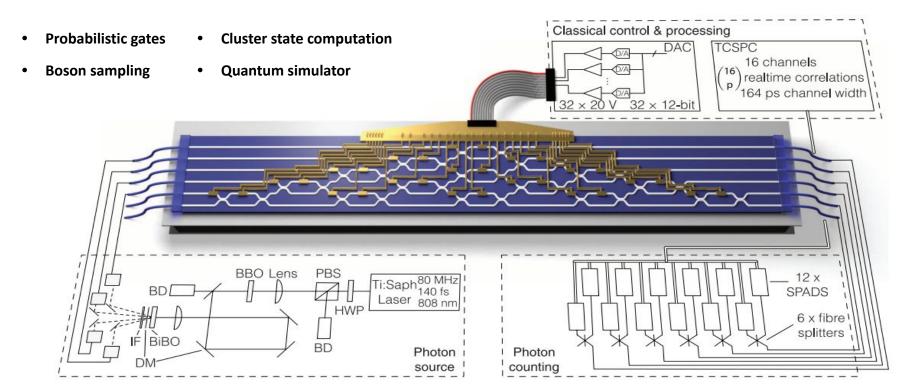


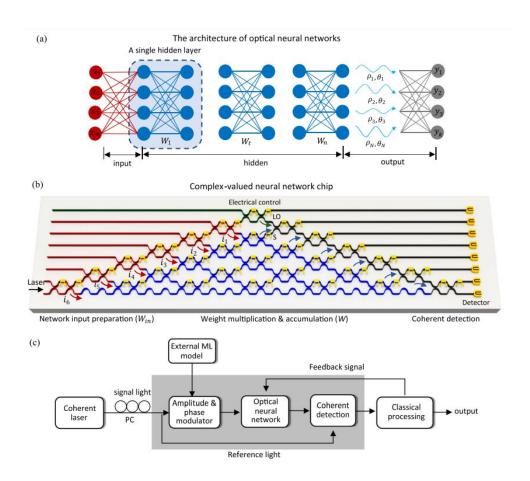
Fast Reconstruction of Programmable Integrated Interferometers

Boris Bantysh

Programmable interferometers

MZI





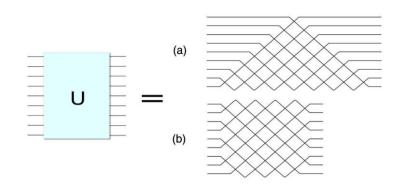
Artificial neural networks with linear optical interferometers

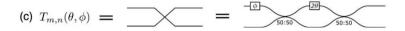
- Solving classification problems
- Complex-valued problems
- Low energy consumption

Interferometers architectures

Optimal design for universal multiport interferometers

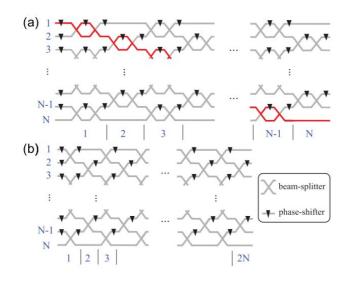
WILLIAM R. CLEMENTS,* PETER C. HUMPHREYS, BENJAMIN J. METCALF, W. STEVEN KOLTHAMMER, AND IAN A. WALMSLEY





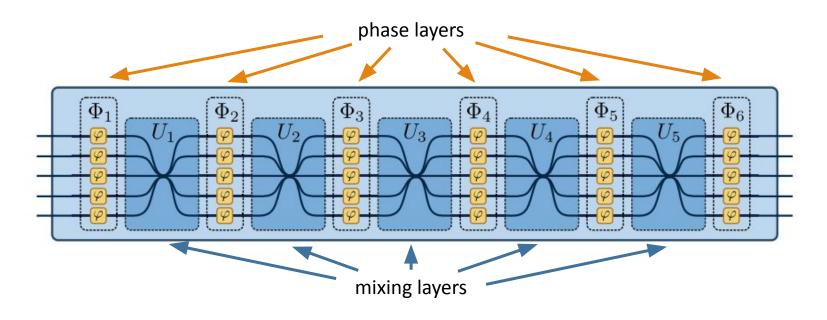
Optimal design of error-tolerant reprogrammable multiport interferometers

S. A. FLDZHYAN, M. YU. SAYGIN,* AND S. P. KULIK



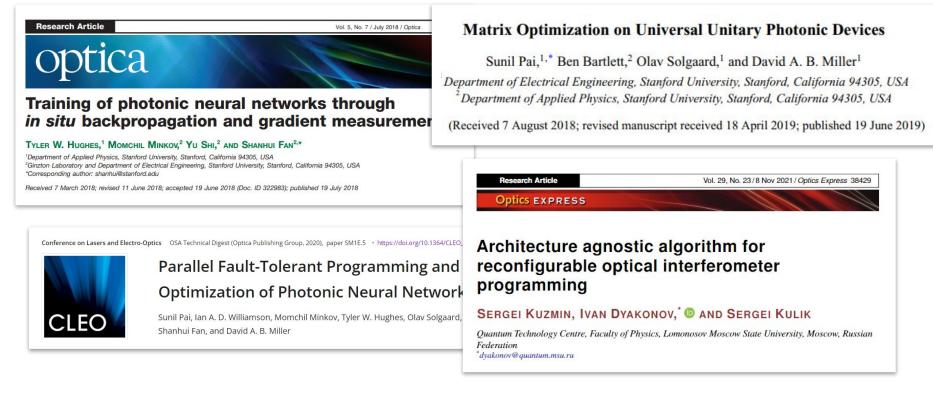
Robust Architecture for Programmable Universal Unitaries

M. Yu. Saygin, I. V. Kondratyev, I. V. Dyakonov, S. A. Mironov, S. S. Straupe, and S. P. Kulik Phys. Rev. Lett. **124**, 010501 – Published 2 January 2020



$$V = \Phi_{K+1} U_K \Phi_K \dots U_2 \Phi_2 U_1 \Phi_1$$

Programmable interferometer characterization



Optics EXPRESS

Fast reconstruction of programmable integrated interferometers

BORIS BANTYSH,^{1,2} KONSTANTIN KATAMADZE,^{1,*} DANDREY CHERNYAVSKIY,^{1,2} AND YURII BOGDANOV^{1,2}

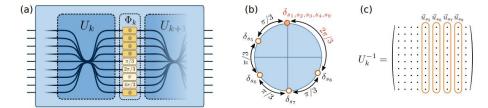


Fig. 4. An example of a partial reconstruction of the inverse matrix of the k-th mixing layer. The dimension of the interferometer is N=9. M=4 matrix columns from 5 to 8 are estimated. (a) The k-th phase layer configuration. (b) The phases of matrix A_k eigenvalues are sorted on the unit circle in ascending order. The first element is considered to be the one that is separated from the previous one by the largest distance. The first N-M=5 elements correspond to eigenvectors with indices $n \notin C$. The remaining M=4 elements are eigenvectors with indices $n \in C$. (c) The corresponding eigenvectors are set to be the columns of the matrix U_k^{-1} .

Algorithm 1. Mixing layers reconstruction

```
Measure V_0 (all phase layers are disabled)
                                                                    \triangleright The product of all currently estimated U_k
V_T \leftarrow I
for k = 1, ..., K - 1 do
                                                                                                      ▶ Initial estimation

    Current number of estimated columns

     i \leftarrow 0
     while j < N do
          M' = \min(M, N - i)
          if M' = N then
                                                                   \triangleright All columns of U_{L}^{-1} are estimated at once
                \varphi_n \leftarrow \frac{2\pi(n-1)}{N-1} \ (n=1,\ldots,N)
                                                                       ▶ Only M' columns of U_k^{-1} are estimated
          else
                \varphi_n \leftarrow 0 \ (n=1,\ldots,N)
               \varphi_{i m} \leftarrow \frac{2\pi m}{M'/2} (m = 1, \dots, M')
          end if
          Measure V_k (phases of (k-1)-th phase layer are \varphi_n)
          A_k \leftarrow V_T V_0^{-1} V_k V_T^{-1}
          Solve A_k \vec{u}_q = r_q e^{i\delta_q} \vec{u}_q for \vec{u}_q, r_q \ge 0, \delta_q \in [0, 2\pi) (q = 1, ..., N)
          Find sorting indices S using (15)
          [U_k^{(\text{inv})}]_{n,j} \ _m \leftarrow [\vec{u}_{s_{N-M'}}]_n \ (m=1,\ldots,M') \triangleright Update M' columns of U_k^{-1} to
match sorted eigenvectors of A_k
          j \leftarrow j \quad M'
     end while
     U_k \leftarrow [U_{\nu}^{(\text{inv})}]^{-1}
     if Using unitary model then
          U_k \leftarrow \operatorname{proj}[U_k] \text{ using (17)}
     end if
     V_T \leftarrow U_k V_T
end for
U_K \leftarrow V_0 V_T^{-1}
```

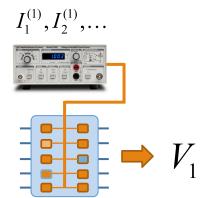

PQCLab/ILOptics

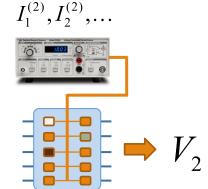
¹Valiev Institute of Physics and Technology, Russian Academy of Sciences, 117218, Moscow, Russia

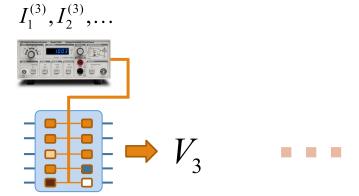
²Russian Quantum Center, Skolkovo, Moscow 143025, Russia

^{*}k.g.katamadze@gmail.com

Data for reconstruction







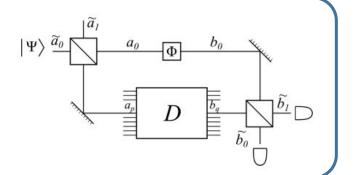
Direct characterization of linear and quadratically nonlinear optical systems

Kevin Valson Jacob, 1,* Anthony E. Mirasola, 1,2 Sushovit Adhikari, 1 and Jonathan P. Dowling 1,3,4,5 ¹Hearne Institute for Theoretical Physics and Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA

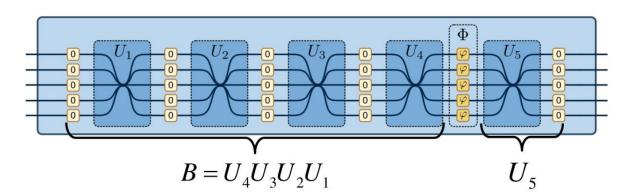
²Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA ³NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China ⁴CAS-Alibaba Quantum Computing Laboratory, USTC Shanghai, Shanghai 201315, China

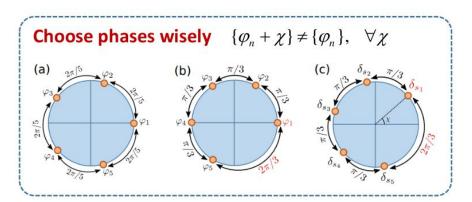
⁵National Institute of Information and Communications Technology, Tokyo 184-8795, Japan

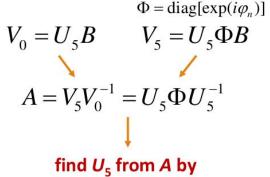
(Received 12 July 2018; published 21 November 2018)



Algorithm





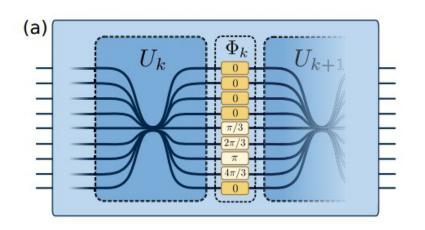


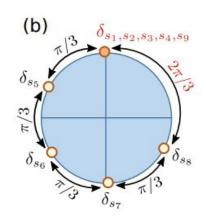
diagonalization $\vec{v}_{i} = e^{i\phi_{n}} \cdot \vec{v}_{i} = a - 1$

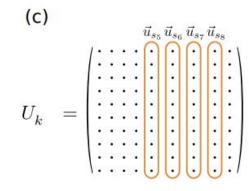
$$A \cdot \vec{u}_q = e^{i\varphi_n} \cdot \vec{u}_q, \quad q = 1, \dots, N$$

continue from right to left and find matrices of all mixing layers

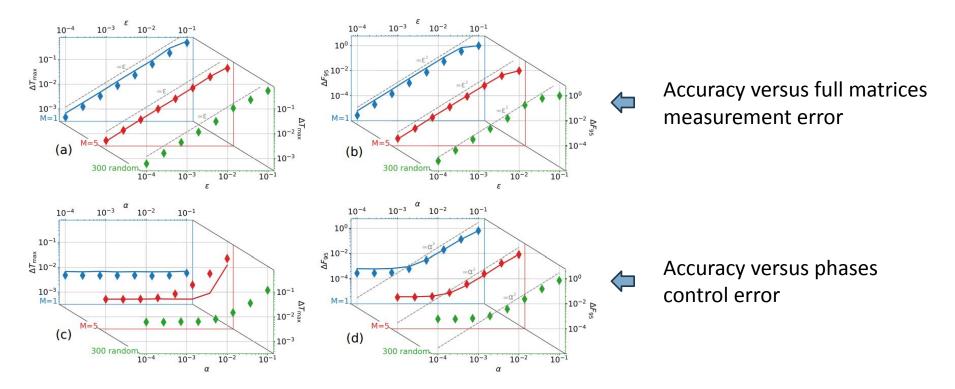
Robustness to phase control errors

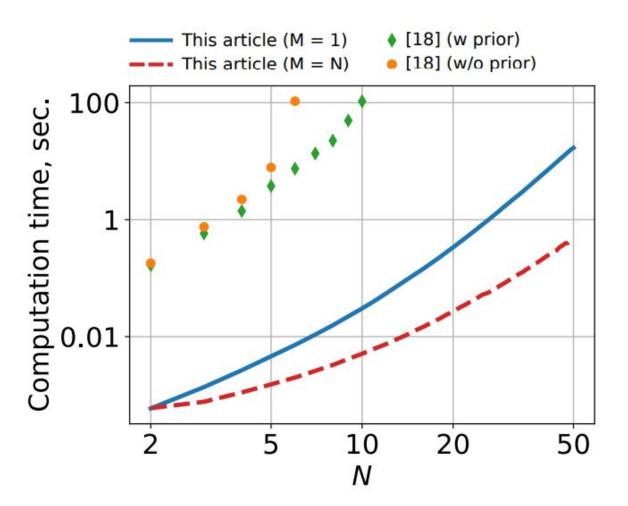




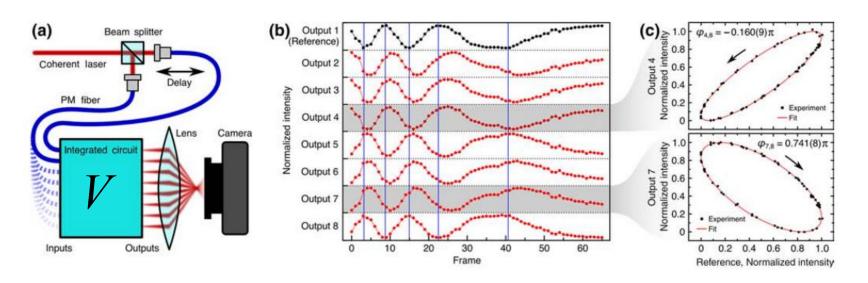


Simulation results



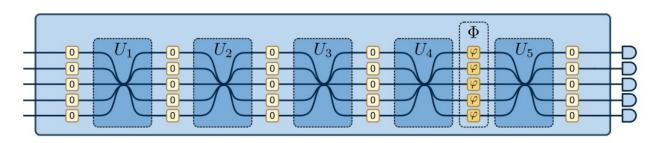


Issue 1: Intensity-only measurements



V and $V' = \operatorname{diag}[\exp(i\delta_n)]V$ give the same output intensities

Conjugate phases trick



$$V_{0} = D_{0}U_{5}B$$

$$V_{0} = \tilde{U}_{5}B$$

$$V_{5} = D_{5}U_{5}\Phi B$$

$$V_{5} = \tilde{D}_{5}\tilde{U}_{5}\Phi B$$

$$V'_{5} = \tilde{D}'_{5}\tilde{U}_{5}\Phi B$$

$$V'_{5} = \tilde{D}'_{5}\tilde{U}_{5}\Phi^{*}B$$

$$V'_{5} = \tilde{D}'_{5}\tilde{U}_{5}\Phi^{*}B$$

$$V'_{5} = \tilde{D}'_{5}\tilde{U}_{5}\Phi^{*}B$$

$$V'_{5} = \tilde{D}'_{5}\tilde{U}_{5}\Phi^{*}B$$

$$\tilde{D}_{5} = D_{5}D_{0}^{*}$$

$$V'_{5} = D'_{5}D_{0}^{*}$$

$$V'_{5} = \tilde{D}'_{5}D_{0}^{*}$$

$$V'_{5} = \tilde{D}'_{5}D_{0}^{*}$$

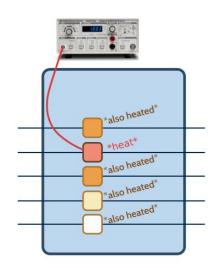
$$\tilde{D}_{5} = D_{5}D_{0}^{*}$$

$$\tilde{D}_{5} = D_{5}D_{0}^{*}$$

$$\tilde{D}_{5} = \tilde{D}'_{5}D_{0}^{*}$$

Bantysh B.I. et al. Laser Phys. Lett. 21, 015203 (2023)

Issue 2: Controls cross-talk



No cross-talk: $\varphi_k = A_k I_k^2 + B_k$

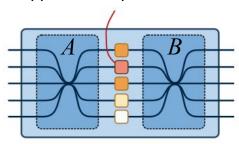
Linear $\varphi_k = \sum_i A_{ki} I_i^2 + B_k$ cross-talk: $\qquad \qquad \text{cross-talk matrix}$

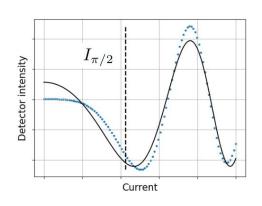
Cannot perform conjugate phases trick

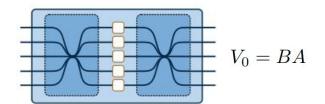
Cross-talk compensation:
$$I_i = \left(\sum_k \left[A^{-1}\right]_{ik} \Delta \varphi_k\right)^{1/2}$$

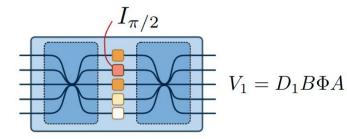
Square phases trick

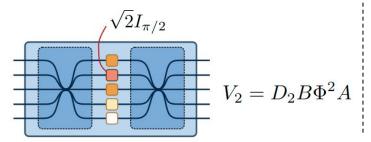
scan through currents and approximate pi/2-current











In analogy to conjugate phases one finds D1 and D2

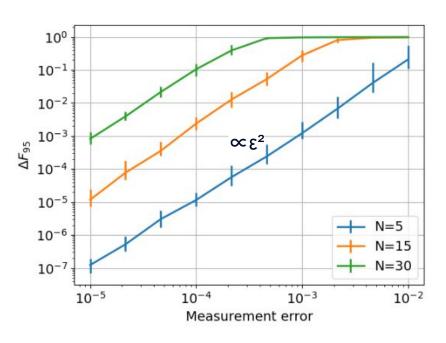
- * The largest eigenvalues phase corresponds to the second **column of** *B*
- * Others eigenvalues phases give cross-talk matrix coefficients

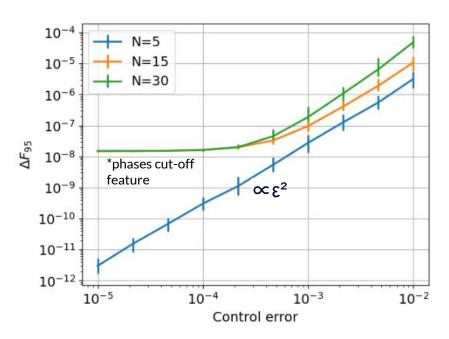
Simulation results

→ random mixing layers

→ random k-diagonal cross-talk matrix

95th quantile of transfer matrix prediction infidelity





_

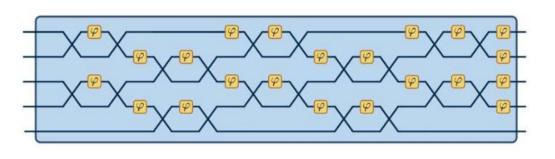
Conclusions

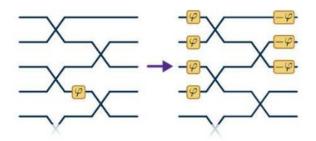
- The algorithm extracts both mixing layer elements and phase layer cross-talk parameters
- The algorithm does not use numerical optimization
- Requires measuring the transfer matrix for 2xNxK+1 different probe currents
- Waiting for experiment data
- TODO: check and improve for non-linear model

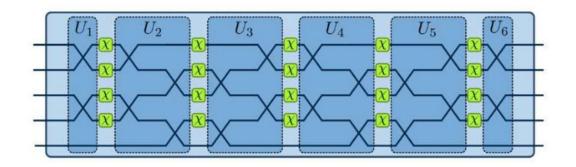
_

Thank you For your attention!

Clements' architecture







We can use the same approach with slightly modified controls