

Hypernuclei signal observation in the BM@N experiment

E.Konstantinova (ISU), S.Merts (JINR)

Mathematical Modeling and Computational Physics Yerevan, Armenia

22/10/2024

Baryonic Matter at Nuclotron (BM@N)

- The first working experiment at the NICA complex
- Fixed target facility
- 8 runs were carried out
- The first physics run with heavy ions was in Dec,2022 - Jan,2023: Xe + Csl @ 3.8 AGeV

What are hypernuclei?

In current work two-particle decays only

 $^{3}_{\Lambda}\text{H}
ightarrow {}^{3}\text{He} + \pi^{-}$ $^{4}_{\Lambda}\text{H}
ightarrow {}^{4}\text{He} + \pi^{-}$

S. Merts, MMCP-24

Hypernuclei in the BM@N

Why hypernuclei are interesting?

Two directions of research

Simulated data

- Helps to develop, test and tune algorithms
- Gives algorithm efficiency

Experimental data

- The main goal of research
- Analysis of hypernuclei production, lifetime estimation etc

Simulated data

- Full realistic geometry of experimental setup used.
- The birth of hypernuclei is a rather rare process.
- So in current MC production the mixture of background events (DCM-SMM model) and signal events (Single hypernuclei) was used in proportion 1:1
- Used statistics: 10⁵ events

Experimantal data

- Xe + Csl @ 3.8 AGeV
- Physics trigger (Mixed/CCT1/CCT2/MBT)
- $\, \circ \,$ Used statistics $\approx 3 \cdot 10^8 \, \text{events}$

Two particle decay

$$^{3}_{\Lambda}\text{H}
ightarrow ^{3}\text{He} + \pi^{-}$$

- ³He could be selected in momentum range \approx 0.5 3.5 GeV/c
- Impossible to separate ⁴He from deuterons

It's not enough to have a ToF technique to identify helium

$$^4_\Lambda {
m H}
ightarrow {
m ^4He} + \pi^-$$

ToF identification plot

dE/dx in GEM

Let's try to use GEM detectors for dE/dx extimation

- It was 7 GEM stations in the last experimental run.
- Each track has 1-7 GEM hits, so the energy loss could be estimated as

$$\langle \frac{dE}{dx} \rangle = \frac{\sum_{i=1}^{N} q_i}{N}, \text{ where } N > 3, q_i - \text{hit signal}$$

- dE/dx has Landau distribution, so the mean value is shifted by the reason of long "tail".
- The truncated mean was used for analysis (40% hits on track with maximal signal were removed).

Number of GEM hits	3	4	5	6	7
Used hits	2	2	3	4	4
In percent	67	50	60	67	57

GEM signal scaling

The goal: to equalize distributions in the horizontal direction

Linear transformation:

 $\mathsf{L}_1 = \mathsf{a} \cdot \mathsf{L}_2 + \mathsf{b}$

 $\mathsf{R}_1 = \mathsf{a} \cdot \mathsf{R}_2 + \mathsf{b}$

dE/dx in GEM

Signals from 7 GEM detectors

before scaling

GEM dE/dx vs mass

Experimantal data

 ${}^{3}\mathsf{H}_{\Lambda}$ ${}^4\mathsf{H}_\Lambda$ Entries / (2 MeV/c²) 3000 Entries / (2 MeV/c²) 1000 2500 800 2000 600 1500 Parameters: Parameters: S = 836 S = 286 S / B = 0.06 400 S / B = 0.10S / $\sqrt{S + B} = 5.20$ 1000 $S/\sqrt{S+B} = 7.07$ $\mu = 3.9253$ $\mu = 2.9923$ 200 500 $\sigma = 0.0025$ $\sigma = 0.0017$ $\begin{array}{c} \mathcal{L} \\ \mathcal{L}_{95} \\ \mathcal{L}_{95} \\ \mathcal{L}_{96} \\ \mathcal{L}_{96} \\ \mathcal{L}_{97} \\ \mathcal{L}_{96} \\ \mathcal{L}_{97} \\ \mathcal{L}_{98} \\ \mathcal{L}_{99} \\ \mathcal{L$ 0 3.96 Μ_{4He+ π}, GeV/c² 3.88 3.9 3.92 3.94

Summary

The main positive result

 ${\ }$ The first stable signals of ${\ }^{3}H_{\Lambda}$ and ${\ }^{4}H_{\Lambda}$ observed in the BM@N experiment

Steps for signal increasing

- New production with better TOF-700 efficiency (factor 2-3)
- More accurate analysis of dE/dx in GEM for the separation of ⁴He from deuterons
- Reduction of geometric cuts number (now 11 cuts used)

Thank you!