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ML for Natural Science

e ML (a.k.a. Al) is widely used nowadays in many different areas

e Models available on the market are tuned for different tasks and
different data specifics

Wolpert, D. H.; Macready, W. G. (1997). "No Free Lunch Theorems for
Optimization". doi:10.1109/4235.585893

e Most problems are human driven:

get me from A to B by the fastest way
paint a pleasant picture for me
translate a text to/from my language

evaluate a credit score of my client

 Problems of the natural science are driven by the Mother Nature

problems, conditions, limitations, data specifics etc. are driven externally
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Example: Science vs Aesthetics Rl

SRResNet SRGAN-MSE SRGAN-VGG22 SRGAN-VGG54 original HR image

doi: 10.1109/CVPR.2017.19.

C. Ledig et al

Figure 6: SRResNet (left: a,b), SRGAN-MSE (middle left: c,d), SRGAN-VGG2.2 (middle: e,f) and SRGAN-VGG54
(middle right: g,h) reconstruction results and corresponding reference HR image (right: 1,j). [4 X upscaling]

e SuperResolution - not how it actually looks, but how it could look like
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Why Generative Models?

The scientific research is essentially an inference
e mathematically it is an inverse problem
e we evaluate intrinsic parameters from external observables

The Maximum Likelihood is a practical approach for
inference

e requires a likelihood function to maximize
No explicit likelihood function for complicated problems
e too many intermediate intrinsic stated to marginalise

Solve inverse problem iteratively via direct problem

e simulate and sample stochastic external observables for a given
intrinsic parameters

e evaluate the best intrinsic parameters by best matching between
simulated and experimentally obtained observables
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Generative Models in HEP

More than 80% of HEP computing resources is dedicated
to simulation of experimental data

Moore's law Is saturated since 2010th

® new approaches are required

Physics simulation i.e. GEANT for HEP is very detailed and
thus slow

Physics simulation it is just a stochastic function to describe
macroscopic response of the detector for a particle with
very few parameters

e which is calculated on the microscopic simulation level

The idea then is to train a simple and fast surrogate
generative model to reproduce that macroscopic
stochastlc function
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Physics

Muon system

Collision point

Hadron Calorimeter

sk E-M Calorimeter
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Physics vs Aesthetics
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e Visually pleasant images

e What about physics goodness?
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Generative Models for Science

V.Chekalina et al,
10.1051/epjconf/201921402034
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Primary and Marginal Distributions
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e |s hard to fit marginal distributions
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Scientific Requirements

e For image generation we are usually happy if the result
looks like it is desired

e |n science we need the result to match the given set of
requirements reasonably well. Requirements are driven by
physics considerations closely connected to the ultimate
physics goal
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Physics-driven Model Training Specifics

e For scientific use, generative models are required to ensure
high quality for specific physics-driven metrics

 Neither generative model is ideal

e the training procedure is agnostic, thus it doesn’t care of physics
metrics

e some of them may be reproduced by the model well, some may not

e How can a good quality for the specific metrics be
ensured?
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Surrogate models for Physics Simulations

Why do we need fast simulation?

e to sample many data for reasonable computing resources
Why do we need many data?
e to study very fine and/or rare effects in data

Fine and rare effects mean much information (entropy) in data

But the surrogate generative model trained on the given
dataset contains only information from this dataset ab initio

e thus train sample needs to be big enough

To train a surrogate model to describe data with
necessary precision, one would need more train data than
it would be necessary to directly provide that precision
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Surrogate models for Physics Simulations
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e Quality of the generative models is limited by the size of
the train data sample
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Statistical Limitations

e (Quality of the generative models is limited by the size of the
train data sample

e generative models can not give a profit for producing statistically
correct big data sets:

e no extra information beyond the train sample is available

e model systematics corresponds to the train sample statistics
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Discussion

e Does all these mean than generative models being used
for high level scientific researches are dead in the water?
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Decomposition

e No information beyond the train sample is available

e Not quite if we can decompose generative model into separate
components (yes, it is an extra a priori information)

e random combinations of different components can drastically increase
variability
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Decomposition

e E.g. fast simulation of the calorimeter response
e generator is trained on 106 incident particles
e 50 particles in the calorimeter per event

e total variability ~(106)%0 = 10300! (NB intrinsic correlation)
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Training Prioritization

e How can a good quality for specific metrics be ensured?

e |f metric is simple, just add it to the training loss

e What if metrics can not be converted into computational
graph?
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e |f metrics is complicated,
substitute it by the surrogate
regressor trained on this

Surrogate Regressor

metrics

e To improve model metrics
guality the surrogate regressor
doesn’t need to be very good

this regressor may be
incorporated into e.g. GAN

discriminator

regressor is used for both train
and generated data, thus its

errors cancels
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A.Rogachev, FR,
doi: 10.1088/1742-6596/2438/1/012086

SAGAN

AUX-loss weight

SAGAN high
-los

( ECAL cluster transverse asymmetry )
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Conclusion

Generative models provide powerful tools of the modern
civilization
Use of ML driven surrogate models may help to

significantly reduce computing resources needed for
different studies in natural sciences

There are specific requirements to such models which are
not addressed by the CS community beyond the scope of
the scientific use

These specifics are not show-stoppers but require extra
knowledge from the field, i.e. require interdisciplinary efforts
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