

Generative Models for Physics MMCP 2024 Yerevan, October 24, 2024 Fedor Ratnikov

NRU Higher School of Economics,

ML for Natural Science

- ML (a.k.a. AI) is widely used nowadays in many different areas
- Models available on the market are tuned for different tasks and different data specifics
 - Wolpert, D. H.; Macready, W. G. (1997). "No Free Lunch Theorems for Optimization". doi:10.1109/4235.585893
- Most problems are human driven:
 - get me from A to B by the fastest way
 - paint a pleasant picture for me
 - translate a text to/from my language
 - evaluate a credit score of my client
 - .
- Problems of the natural science are driven by the Mother Nature
 - problems, conditions, limitations, data specifics etc. are driven externally

Example: Science vs Aesthetics

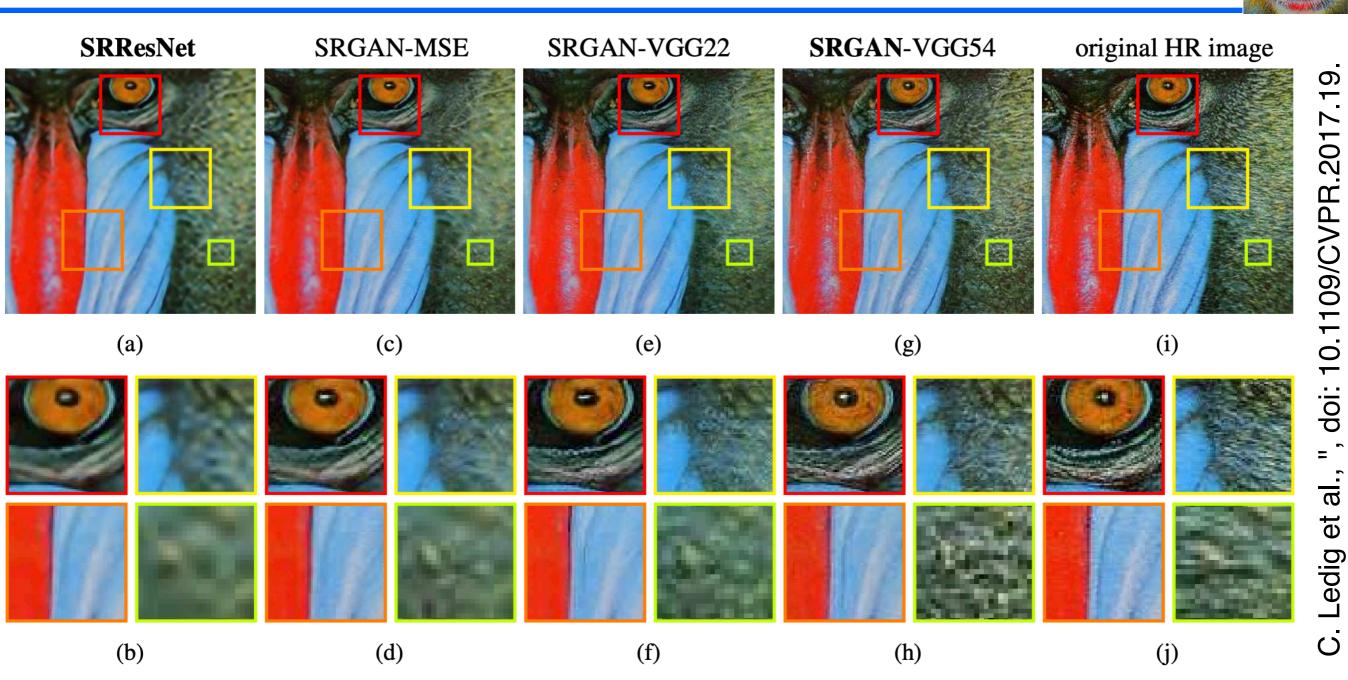


Figure 6: SRResNet (left: a,b), SRGAN-MSE (middle left: c,d), SRGAN-VGG2.2 (middle: e,f) and SRGAN-VGG54 (middle right: g,h) reconstruction results and corresponding reference HR image (right: i,j). [$4 \times$ upscaling]

SuperResolution - not how it actually looks, but how it could look like

R

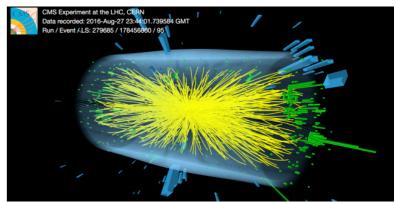
. ש

Why Generative Models?

- The scientific research is essentially an inference
 - mathematically it is an **inverse problem**
 - we evaluate intrinsic parameters from external observables
- The Maximum Likelihood is a practical approach for inference
 - requires a likelihood function to maximize
- No explicit likelihood function for complicated problems
 - too many intermediate intrinsic stated to marginalise
- Solve inverse problem iteratively via direct problem
 - simulate and sample stochastic external observables for a given intrinsic parameters
 - evaluate the best intrinsic parameters by best matching between simulated and experimentally obtained observables

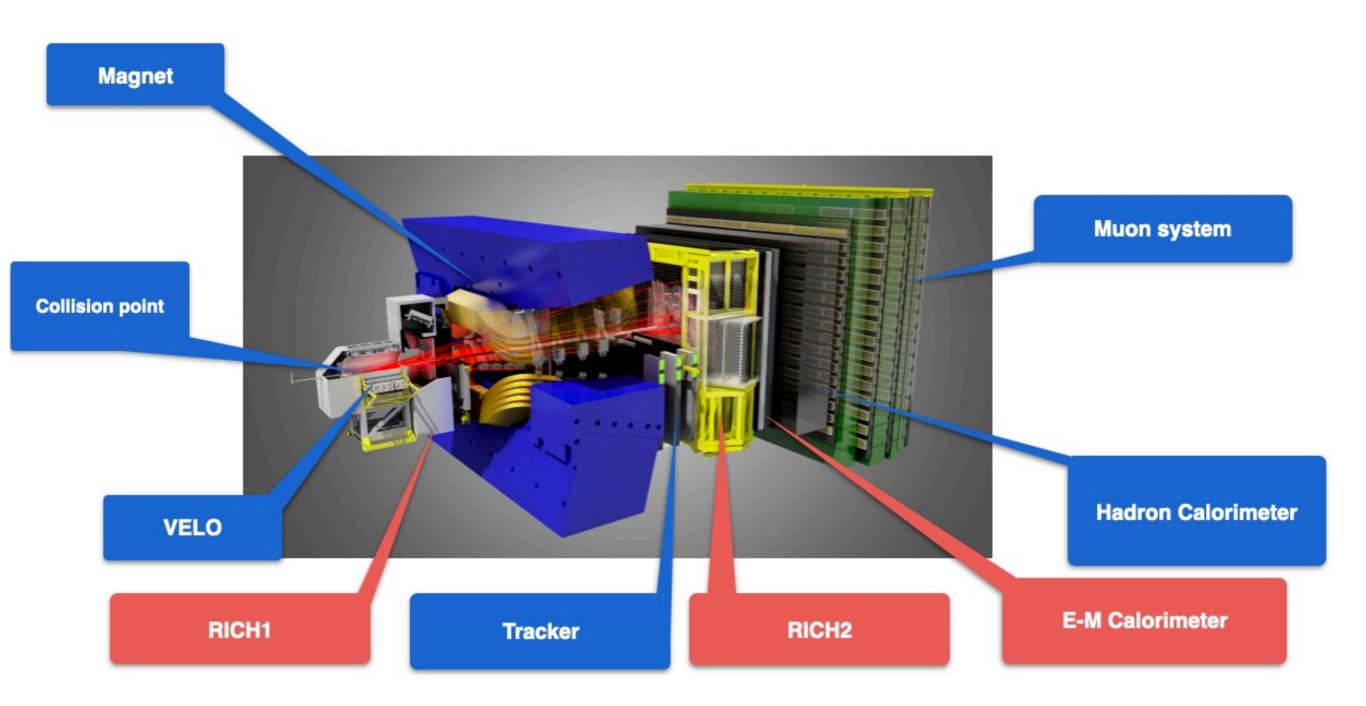
Generative Models in HEP

- More than 80% of HEP computing resources is dedicated to simulation of experimental data
- Moore's law is saturated since 2010th
 - new approaches are required

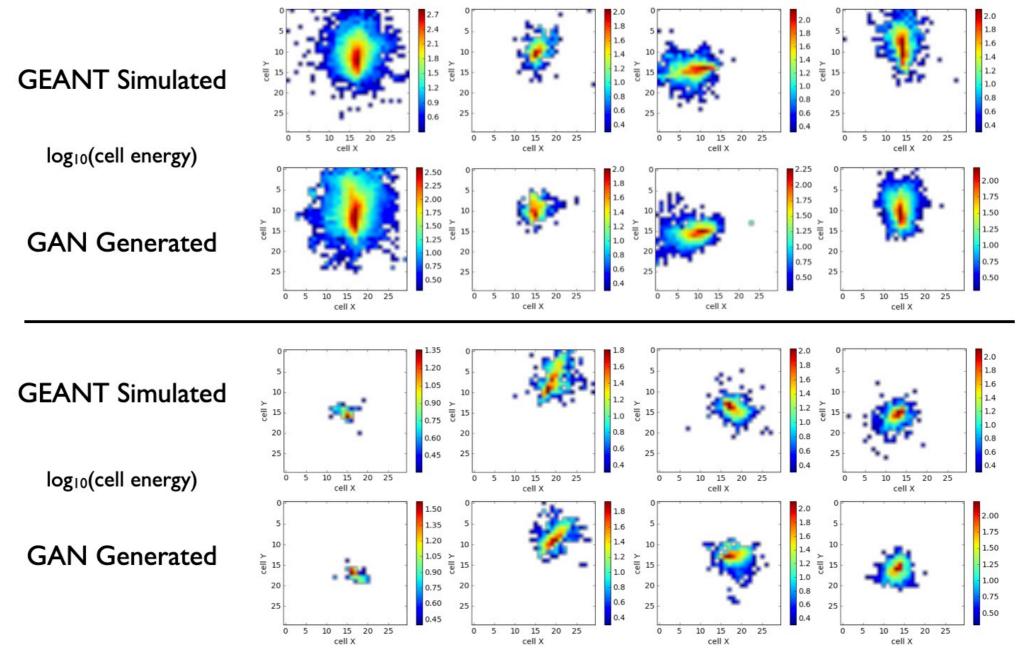


- Physics simulation i.e. GEANT for HEP is very detailed and thus slow
- Physics simulation it is just a stochastic function to describe macroscopic response of the detector for a particle with very few parameters
 - which is calculated on the microscopic simulation level
- The idea then is to train a simple and fast surrogate generative model to reproduce that macroscopic stochastic function

Physics



Physics vs Aesthetics

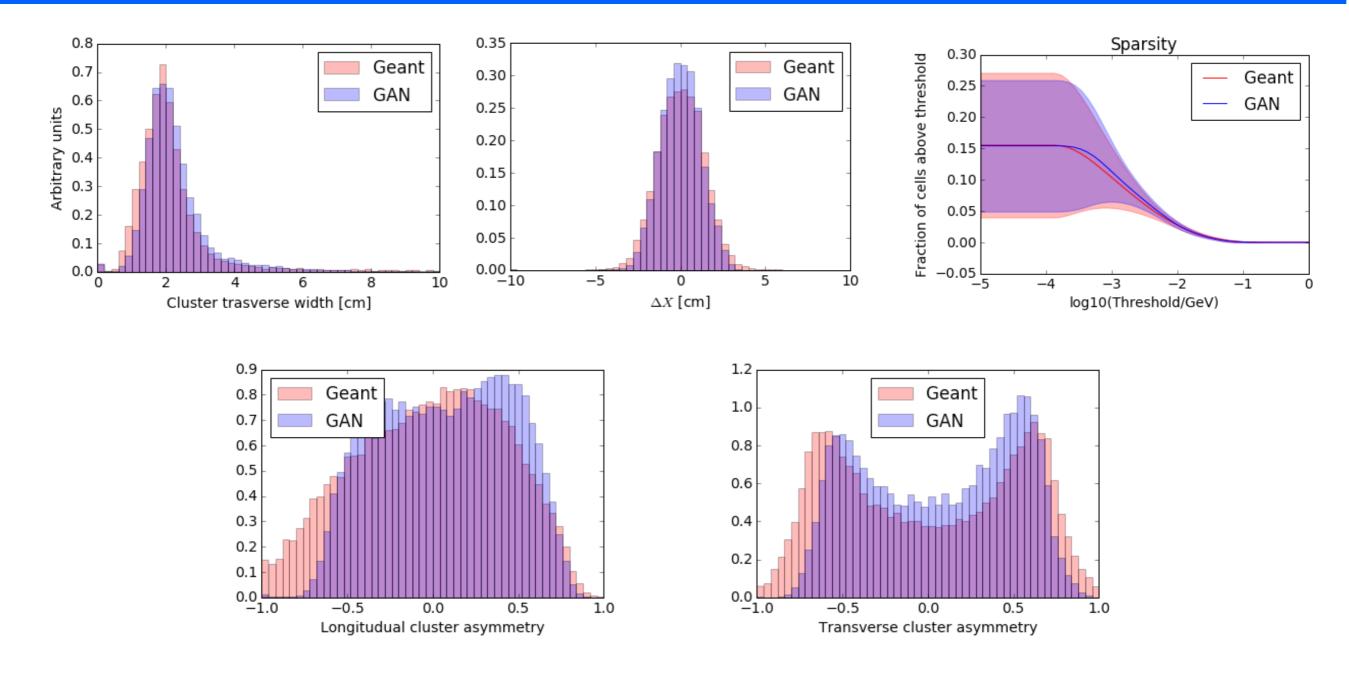


- Visually pleasant images
- What about physics goodness?

doi: 10.1051/epjconf/201921402034

V.Chekalina et al,

Primary and Marginal Distributions



Is hard to fit marginal distributions

- For image generation we are usually happy if the result looks like it is desired
- In science we need the result to match the given set of requirements reasonably well. Requirements are driven by physics considerations closely connected to the ultimate physics goal

Physics-driven Model Training Specifics

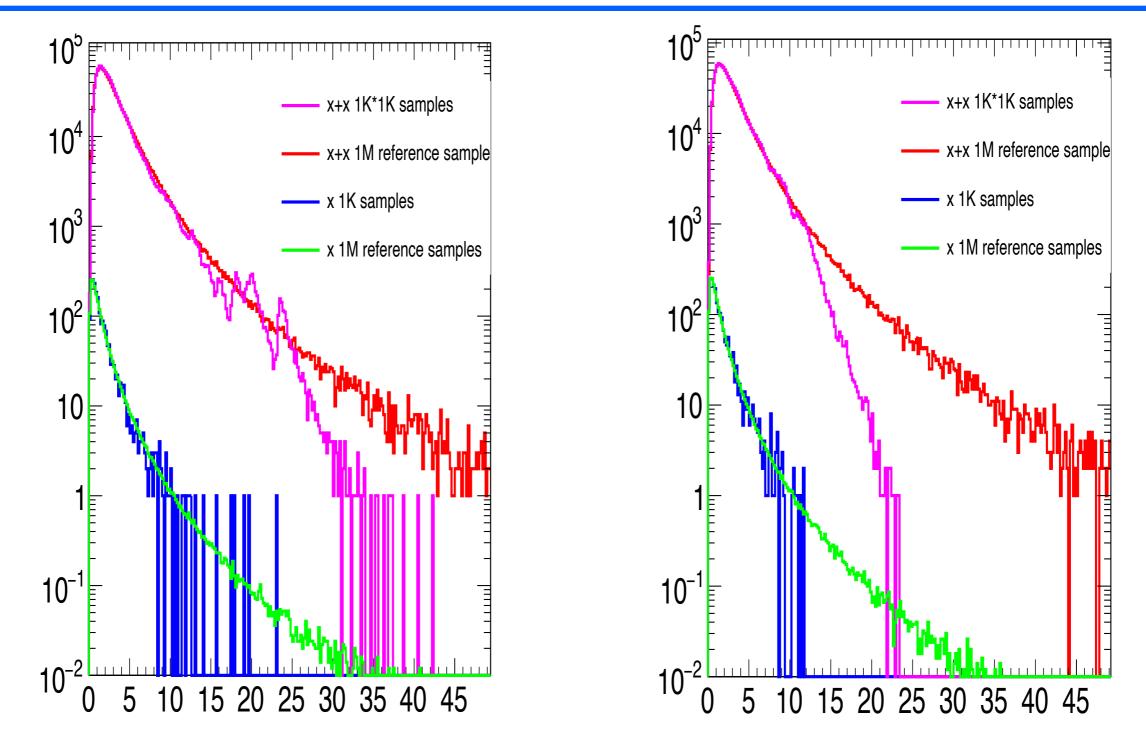
- For scientific use, generative models are required to ensure high quality for specific physics-driven metrics
- Neither generative model is ideal
 - the training procedure is agnostic, thus it doesn't care of physics metrics
 - some of them may be reproduced by the model well, some may not

 How can a good quality for the specific metrics be ensured?

Surrogate models for Physics Simulations

- Why do we need fast simulation?
 - to sample many data for reasonable computing resources
- Why do we need many data?
 - to study very fine and/or rare effects in data
- Fine and rare effects mean much information (entropy) in data
- But the surrogate generative model trained on the given dataset contains only information from this dataset ab initio
 - thus train sample needs to be big enough
- To train a surrogate model to describe data with necessary precision, one would need more train data than it would be necessary to directly provide that precision

Surrogate models for Physics Simulations



 Quality of the generative models is limited by the size of the train data sample

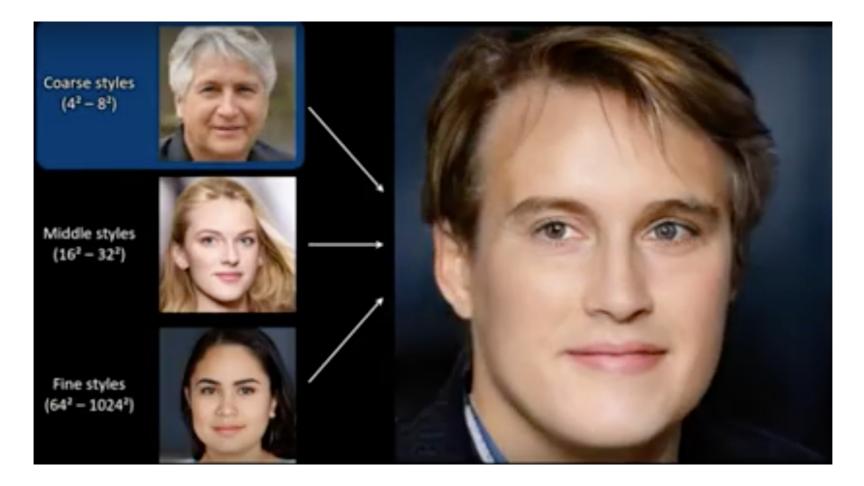
- Quality of the generative models is limited by the size of the train data sample
 - generative models can not give a profit for producing statistically correct big data sets:
 - **no extra information** beyond the train sample is available
 - model systematics corresponds to the train sample statistics

Discussion

 Does all these mean than generative models being used for high level scientific researches are dead in the water?

Decomposition

• No information beyond the train sample is available



- Not quite if we can decompose generative model into separate components (yes, it is an extra *a priori* information)
 - random combinations of different components can drastically increase variability

Decomposition

- E.g. fast simulation of the calorimeter response
 - generator is trained on 10⁶ incident particles
 - ~50 particles in the calorimeter per event
 - total variability $\sim (10^6)^{50} = 10^{300}$! (NB intrinsic correlation)

Training Prioritization

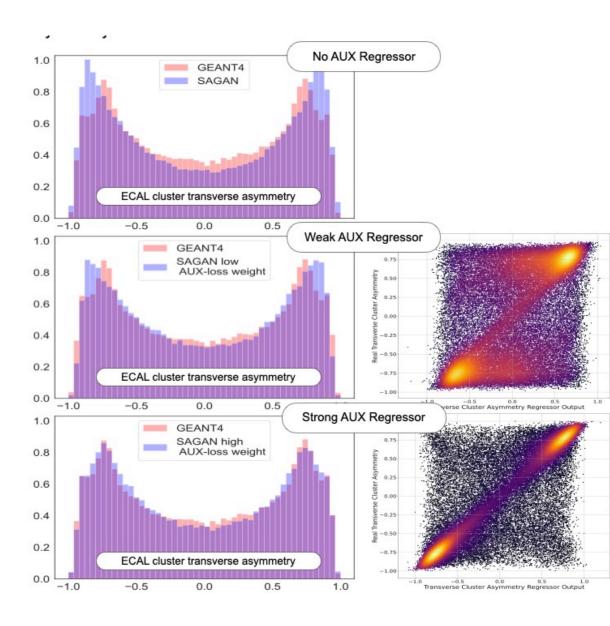
- How can a good quality for specific metrics be ensured?
 - if metric is simple, just add it to the training loss

What if metrics can not be converted into computational graph?

Surrogate Regressor

- If metrics is complicated, substitute it by the surrogate regressor trained on this metrics
 - this regressor may be incorporated into e.g. GAN discriminator
- To improve model metrics quality the surrogate regressor doesn't need to be very good
 - regressor is used for both train and generated data, thus its errors cancels

A.Rogachev, FR, doi: 10.1088/1742-6596/2438/1/012086



Conclusion

- Generative models provide powerful tools of the modern civilization
- Use of ML driven surrogate models may help to significantly reduce computing resources needed for different studies in natural sciences
- There are specific requirements to such models which are not addressed by the CS community beyond the scope of the scientific use
- These specifics are not show-stoppers but require extra knowledge from the field, i.e. require interdisciplinary efforts

