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Particle Identification at MPD experiment
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MPD particle identification (PID) is based on Time-Projection Chamber (TPC) and Time-of-Flight (TOF).

A TOF measures the particle flight time over 

a given distance along the track trajectory;

A TPC can identify charged particles by measuring 

their specific ionization energy losses (dE/dx);

Klempt W. Review of particle identification by time of flight techniques 

Knowing the particle momentum (from TPC) one obtains the mass squared and thus identity of the particle.



Baseline PID at MPD - N-sigma
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PID efficiency and contamination for all tracks (left) and only identified tracks (right)

in Bi+Bi collisions at 9.2 GeV

There are two ways of calculating PID efficiency. The difference is the number of tracks in the denominator



Training and Test data
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Subsample of the MPD Monte-Carlo production (Request 25) was used for training XGBoost model.

Event generator UrQMD

Transport Geant 4

Impact parameter 
ranges

0-16 fm (mb)

Smear Vertex XY 0.1 cm

Smear Vertex Z 50 cm

Colliding system Bi+Bi

Energy 9.2 GeV

track selection criteria: (p < 100) & (|m2| < 100) & (nHits > 15) & (|eta|<1.5) & (dca < 5) & (|Vz| < 100)



Input data description
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Test XGBoost classifier on Request 25 subsample 
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Efficiency and contamination of XGBoost



Class distribution and features informativeness

● In case of high momentum values amount of useful information (dEdx and m2) is not a sufficient to make 

robust predictions.

● In the absence of informativeness features, the model may use statistics to predict particle type.

● But particle distribution did not correspond to expected distribution in training data (number of Kaons is 

higher than number of Pions). 7



Balanced class distribution vs Expected
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Balanced class distribution vs Expected
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Balanced class distribution vs Expected
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Efficiency ratio of XGBoost with expected distribution and balance



Balanced class distribution vs Expected

11Contamination ratio of XGBoost with expected distribution and balance

Despite the fact that expected particle distribution allowed for improve PID efficiency, contamination became 

worse. There is a trade-off between efficiency and contamination, and a balance should be found in the future.



ML vs Blind method
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For a given momentum range

3 classes: Pion-Kaon-Proton

Frequencies: 60 - 30 - 10

ksi is a uniformly distributed random number

for pi (i_th particle):

ksi = rand[0, 1]

if ksi in [0, 0.6] pi is Pion

else if ksi in [0.6, 0.9] pi is Kaon

else pi is Proton



XGBoost vs N-sigma on Request 25 subsample
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Efficiency ratio of XGBoost and n-sigma method



XGBoost vs N-sigma
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Efficiency ratio of XGBoost and n-sigma method

Impact parameter 0-14 fm

Energy 5.5 GeV



Inference time of the algorithms
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GPU: Nvidia Tesla V100-SXM2 NVLink 32GB HBM2 

CPU: Intel Xeon Gold 6148 CPU @ 2.40 GHz 20 Cores / 40 Threads

CPU*: Intel® Core™ i7-8700 CPU @ 3.20GHz × 12



Conclusion and Outlook
1. The distribution of particles in the training dataset plays a crucial role in the performance of 

gradient boosting models.

2. There is some useful information in spite of features overlapping in high momentum region. 

It was taken into account by ML classifier.

Next we are going to:

● do additional testing to characterize identification stability of the classifier on data produced 

with different initial parameters of generated MC tracks at the MPD;

● investigate the ways of recognizing and addressing the problem of distribution shift to avoid 

decline of classifier performance.
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Backup
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Classification of Charged Particles
In Machine Learning terms PID can be considered as classification task (Supervised learning).

Let

Х - is the input space (particle characteristics such as: dE/dx, m2, β, q, etc)

Y - is the output space (particle species such as: π, k, p, etc)

Unknown mapping exists

m : X → Y,

for values which known only on objects from the finite training set

Xn = (x1, y1), …, (xn, yn), 

Goal is to find an algorithm a that classifies an arbitrary new object x ∈ X

a : X → Y.
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Formulas
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Tabular Data: Deep Learning vs Gradient Boosting

20https://sebastianraschka.com/blog/2022/deep-learning-for-tabular-data.html



Data description
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feature values range

Vx (-0.106, 0.106)

Vy (-0.103, 0.112)

Vz (-50, 54.1)

phi (-3.1415, 3.1415)

theta (0.53, 2.61)

gPt (0.106, 98)

beta [0.012, 1.564]

feature values range

p (0.1, 100)

q {-1, 1}

dedx (0, 72)

m2 (-100, 100)

nHits [20, 53]

eta [-1.3, 1.3]

dca (0, 5)



Gradient Boosting
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Gradient boosting is a machine learning technique which combines weak learners into a single strong 

learner in an iterative fashion 



Gradient Boosted Decision Tree
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Gradient Boosted Decision Tree (GBDT) uses decision trees as weak learner. They can be considered 

as automated multilevel cut-based analysis



XGBoost vs LightGBM vs CatBoost vs SketchBoost
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Symmetric Tree (CatBoost, SketchBoost)Asymmetric Tree (XGB, LGBM)

Level-wise Tree Growth (XGB) Leaf-wise Tree Growth (LGBM)
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All classifiers have been trained using the Nvidia Tesla V100-SXM2 NVLink 32GB HBM2 within the 

ecosystem for tasks of machine learning, deep learning, and data analysis at HybriLIT platform 

Experiment design

5-fold Cross-Validation:



Two stages of the experiments
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Some parameters for the tuning and model evaluation stages

Stage Learning Rate Max Number of Iterations Early Stopping

Tuning 0.05 5 000 200

Model Evaluation 0.015 20 000 500

Results for hyperparameter tuning (after 30 iterations of the TPE algorithm for each GBDT)

Framework Max. Depth L2 leaf reg. Min. data in leaf Rows sampling rate

XGBoost 8 2.3 0.00234 0.942

LightGBM 12 0.1 4 0.981

CatBoost 8 3.0 5 0.99

SketchBoost 8 3.0 5 0.99

Iosipoi L., Vakhrushev A. SketchBoost: Fast Gradient Boosted Decision Tree for Multioutput Problems



Hyperparameters tuning
Tree-structured Parzen Estimator (TPE) was used to find the optimal hyperparameters;

TPE is a form of Bayesian Optimization.

27https://miro.medium.com/max/4800/1*tYWqO5BwNDVaM3kP3w1IAg.png

Random search TPE search



Comparative analysis of the algorithms. Efficiency
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XGBoost LightGBM CatBoost SketchBoost

Total Efficiency 0.99327 0.99235 0.99138 0.99239

28

XGBoost
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XGBoost Model Interpretation. Feature Importance
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Importance type can be defined as the total gain across all splits the feature is used in

This approach are sensitive when input variables are correlated, and may lead for instance to unreliability 
in the importance ranking



Misclassification. Positive pions
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Test XGBoost with expected distribution on Request 25
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Efficiency and contamination of XGBoost


