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Problem Statement: The Need for Advanced Tracking Methods

Unprecedent scale of modern experiments:

• Up to 200 simultaneous proton-proton interactions is 
expected at High Luminosity Large Hadron Collider, 200 
particle tracks on average, 40K of tracks considering pile-
up

• The expected event rate of the SPD experiment is 3 MHz

• Event pileup makes track reconstruction more complicated

• Traditional tracking methods struggle with dense, 
overlapping particle tracks due to computational 
complexity and time constraints

Deep Learning for Efficient Track Reconstruction:

• DL models can handle high-dimensional data and complex 
spatial correlations between tracks 

• Multiple scattering and inhomogeneous magnetic field 
effects could be learned from training data

• Effective parallelization using GPUs out of the box

• TrackML Challenge was launched to explore new 
scalable approaches for particles tracking

https://webific.ific.uv.es/web/en/content/taking-lhc-higher-luminosity

Deep learning-based methods have a 

potential to cope with immense data 

volumes in modern experiments
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https://home.cern/science/accelerators/high-luminosity-lhc
https://www.kaggle.com/c/trackml-particle-identification
https://webific.ific.uv.es/web/en/content/taking-lhc-higher-luminosity


Classification of Track Reconstruction Methods

Local Tracking

Works with parts of event data (hits, track 
segments, detector parts). 

Examples: Kalman Filter (stand apart, 
bunch of methods), Cellular Automaton.

Pros:

• High parallelism (individual tracks)

• Lightweight and fast

• Low memory use

Cons:

• Requires post-processing for full event 
reconstruction

• Prone to false positives (due to lack of 
full event view)

Global Tracking

Uses full event data for track reconstruction.                          

Examples: Graph Neural Networks, Hopfield 
network, Point Cloud Processing.

Pros:

• Higher quality metrics, fewer false positives

• Event-level parallelism possible

Cons:

• High memory requirements (entire event as 
input)

CNNs on FPGAs for 

Track Reconstruction

Graph Neural Networks in Particle Physics 3

https://www.semanticscholar.org/paper/CNNs-on-FPGAs-for-Track-Reconstruction-Boser-Nielsen/c5c156922f7fd00155f0ffa37b046e716763d974
https://www.semanticscholar.org/paper/CNNs-on-FPGAs-for-Track-Reconstruction-Boser-Nielsen/c5c156922f7fd00155f0ffa37b046e716763d974
https://arxiv.org/abs/2007.13681


Hybrid Tracking Methods

Hybrid Tracking

Combines local and global tracking methods.

Stages

1. Track seeding, track candidates or event graph building. Main goal: high recall while reducing the number of 
false positives as much as possible.

2. Tracks selection either by various fitting criteria or ranking candidates using machine learning methods (e.g. 
graph sparsification, candidates’ classification). Main goal: increase precision without recall dropping.

Pros:

• Achieves both high performance and efficiency.

Cons:

• Errors depend on multiple models.

Input Event 

Hits

Clustering hits into 

track segments

Event graph 

construction
Graph 

Sparsification
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TrackNET as Local Tracking Method

How the model works?

• Locality – one track-candidate during the inference

• The model predicts center and radius of the sphere 
where to search for the next hit

• All event hits are placed in the spatial search index

• Only K nearest to the center of sphere hits are 
checked (setting K=1 leads to linear computational 
complexity)

• Candidate tracks are extended by hits that fall into 
sphere.

• Extended track-candidates are fed back to the 
model input.Model Architecture

Pros:

• Fast and Extremely Lightweight 

• Few hyperparameters to tune – loss weights and K 

• No need for seeding – prediction starts from single hit

Cons:

• lot of false positives or so-called ghosts, 

because of its local nature of prediction
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TrackML Particle Tracking Challenge

• 100 GB of simulated data encompassing around 10,000 
events

• 10000 tracks per event on average

• Each track has about 10 hits – 100000 signals in one event

• Straight-line tracks (high momentum) are rare and have 
more weight in competition scoring function
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https://www.kaggle.com/c/trackml-particle-identification/overview

Noticeable participants:

• 1st: top-quarks – Logistic regression for pairs and triplets, helix extrapolation (8 min/event).

• 2nd: outrunner – Dense NN for pair prediction, circle fitting (3+ hrs/event).

• 3rd: Sergey Gorbunov – Triplet seeds, helix fit with magnetic field estimation (0.56 sec/event).

• 9th: CPMP – DBSCAN clustering, filtered by module frequency (10 hrs/event, 30,000+ DBSCAN runs).

• 12th: Finnies – DBSCAN seeding, LSTM for predicting next 5 hits (slow, no speed given).

Most of the solutions repeat the classical pipeline for tracking – seeding followed by trajectory fitting.

https://www.kaggle.com/c/trackml-particle-identification/overview


TrackNET Training Overview on TrackML Dataset

Space shrinking/compression: 

• for external detectors, the distance between layers is 
~2 times larger than for internal ones. Shrink the space 
of external detectors by factor two.
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Multiple hits on the same layer during training due to 
modules intersections: 

• take the closest one (least r in cylindrical coordinates)

Picking seeds: 

• taking all hits from the innermost layers

Training

• 10 mln tracks, 300 epochs

• 15 hours on single Nvidia V100 32GB

• weight in TrackNET loss alpha = 0.9999 

because of unnormalized coords and large 
detector

The Tracking Machine Learning challenge: Accuracy phase

https://arxiv.org/abs/1904.06778


TrackML Evaluation Results (work in progress)
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Testing setup:

• Xeon(R) Gold 6148 CPU @ 2.40GHz (only CPU, 
optimization of memory operations is required)

• No data reduction based either on particle momentum 
(no pt cut) or number of events (original pile-up)

• No specific tuning for the TrackML scoring metric –
considering all tracks with equal importance

• Following TrackML metric, a track is considered fully 
reconstructed if >50% of hits were recognized correctly

• In case of duplicate track candidates, only one is included 
in the final metrics

K searched hits 1 2

Recall (%) 35,15 56,41

Precision (%) 33,47 1,01

Event processing time (sec) 6,4289 45,2144

Note: 

• Building precision vs pt plot requires momentum 
estimation for the track-candidates 

Statistics on 10 events (100K tracks)



Conclusion

• The TrackNET model demonstrates high performance even in challenging environments.

• Due to the model's local nature, a second stage of track-candidate selection is necessary to further improve 
precision.

• The model's first application to the TrackML dataset has been successfully conducted.

• Further work is needed to enhance performance: tuning to the TrackML scoring metric, applying data 
reductions, and balancing training samples based on relevance.

• Without any optimizations, the model processes an average TrackML event in approximately 10 seconds on 
a single CPU.

• The code of TrackNET application to TrackML data will be open-source soon.

• The results of TrackNET application to TrackML were the part of the talk presented at CHEP 2024 at 
Kraków this week.
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StepAhead TrackNET: Dealing with Detector Inefficiency

• The network is designed to predict the continuation of a track even when multiple hits are missing.

• It predicts two steps ahead simultaneously (covering two spheres of potential hit locations).

• If no hit is found in the 1st sphere, the 2nd sphere is checked.

• When a hit is in the 2nd sphere, the track is extended using a virtual point at the center of the 1st sphere.

• While predictions based on the first sphere are less accurate (due to larger uncertainty), this broader search 

radius helps locate the next track hits.

• However, using a virtual point in place of a missing hit for the very first prediction (first hit and virtual point) 

can introduce confusion. To mitigate this, track candidates without hits in the first sphere are temporarily 

saved and extended later using both the virtual point and the hit from the second sphere.
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