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Formulation of BVP and GTM and FEM schemes

Self-adjoint BVP for the elliptic di�erential equation

(T +V (x)−E) Φ(x)=0, T =− 1
g0(x)

d∑
i,j=1

∂

∂xi
gij (x)

∂

∂xj
, x=(x1, . . . , xd )∈Ω∈Rd , (1)

g0(x) > 0, gji (x) = gij (x), + Neumann or Dirichlet boundary conditions. (2)

The expansion over the appropriate basis functions Nl (x)

in the Galerkin type method (GTM), or �nite element method (FEM)

Φh
m(x) =

LΩ∑
l=1

Nl (x)Φh
lm. (3)

Algebraic generalized eigenvalue problem

(A− BEh
m)Φh

m = 0, (Φh
m)T BΦh

m = 1, (4)

with respect to Eh
m and Φh

m.



In the FEM, the polyhedral domain Ω̄ is divided into subdomains ∆q , called �nite

elements Ω̄ = Ω̄h(x) =
⋃Q

q=1 ∆q , Ω̄ ⊂ Rd .
The local basis functions , LIPs or HIPs are introduced: ϕ̂κrq(x), x ∈ ∆q .

The piecewise polynomial functions (PPFs)

constructed by joining the polynomials ϕ̂κp′
rq (x)

on the �nite elements ∆q ∈ Ω̄h(x)
Nl (x) =

Q⋃
q=1

{ϕ̂κrq(x)|x ∈ ∆q}. (5)



Structures of mass and sti�ness matrices A and B

2D 3D



5DBVP for the �ve-dimensional quarupole Hamiltonian(5DQH)

The Schr�odinger equation with respect to eigenfunction ΨnIM ≡ ΨnIM (β, γ, ϑi ) and the
corresponding eigenvalues of energy EnI has the form

2
~2 (Ĥ − EnI)ΨnIM =

(
T̂vib + T̂rot +

2
~2 (V − EnI)

)
ΨnIM = 0. (6)

orthogonality and normalization conditions∫
Ω5

ΨnIM Ψn′I′M′g0(β, γ)dβdγ sinϑ2dϑ1dϑ2dϑ3 = δnn′δII′δMM′ . (7)

The eigenfunction ΨnIM in the representation of the angular momentum I and its
projections K and M on the third axes of the intrinsic and laboratory frames

ΨnIM (β, γ, ϑi ) =
I∑

K≥0,even

DI∗
MK (ϑi )ΦnIK (β, γ), (8)

where DI∗
MK (ϑi ) are the normalized D-functions with the space parity π̂ = ±1

DI∗
MK (ϑi ) =

√
2I + 1
8π2

(DI∗
MK (ϑi ) + π̂(−1)IDI∗

M−K (ϑi ))√
2(1 + δK 0)

. (9)



2DBVP for �ve-dimensional quarupole Hamiltonian(5DQH)

The unknown set of Imax internal components ΦnIK ≡ ΦnIK (β, γ), where K = 0, 2, . . . , I
for even I, or K = 2, 4, . . . , (I − 1) for odd I, compose the vector eigenfunction ΦnI

corresponding to the eigenvalue E I
n (in MeV) of the BVP for a system of I/2 + 1 or

(I − 1)/2 equations for even or odd I, respectively:[
T̂vib + T I

KK +
2
~2 (V − EnI)

]
ΦnIK + T I

KK +2ΦnIK +2 + T I
KK−2ΦnIK−2 = 0,

T̂vib(x1, x2) = − 1
g0(x1, x2)

2∑
i,j=1

∂

∂xi
gij (x1, x2)

∂

∂xj
,

T I
KK = (I(I + 1)− K 2)

(
1

2J1
+

1
2J2

)
+

K 2

J3
, T I

KK±2 =

(
1

4J1
− 1

4J2

)
C I

KK±2,

C I
KK +2 = C I

K +2K = (1 + δK 0)1/2[(I − K )(I + K + 1)(I − K − 1)(I + K + 2)]1/2,

Jk (x1, x2) = Jk (β, γ) = 4Bk (β, γ)β2 sin2(γ − 2πk/3). (10)

The components ΦnIK are subject to Neumann or Dirichlet boundary conditions at
the boundary ∂Ω2 of the domain Ω2 and the orhtogonality and normalization
conditions∫ βmax

0

∫ π/3

0
g0(β, γ)dβdγ

Imax∑
K≥0,even

ΦnIK (β, γ)Φn′IK (β, γ) = δnn′ . (11)



Exact solvable 5D harmonic oscillator (5DHO)

V (β, γ) = (C2/2)β2, Bββ = Bγγ = B1 = B2 = B3 = B0, Bβγ = Bγβ = 0,

g0(β, γ) = B0g11(β, γ) = B0β
2g22(β, γ) = B5/2

0 β4 sin(3γ), g12(β, γ) = g21(β, γ) = 0.

Internal (a0, a2) and a�ne (b0, b2) coordinates

a0=β cos(γ)=b0+

√
2
3

b2, a2=
1√
2
β sin(γ)=b2.

Rectangular grid of �nite
elements for the 5D harmonic
oscillator. The Gaussian nodes
are marked by circles.
In grid Ωb0,b2 the
cells ∆q for which
min(b0,b2)∈∆q V (b0, b2) > 30
are dropped.



Theoretical estimations of the order of the 2d FEM scheme

The Runge coe�cients Rh were calculated in the grids Ωβ,γ and Ωb0,b2

Rh = log2

∣∣∣((E I
n)h − (E I

n)h/2)/((E I
n)h/2 − (E I

n)h/4)
∣∣∣ , (12)

where (E I
n)h, (E I

n)h/2, (E I
n)h/4 are the energies calculated by the program 2DFEM on

the doubly condensed grids, gave estimates con�rming the theoretical estimate of the
order of 2p′ of the 2d FEM scheme.

The discrepancies δEI,n=1 = Enum
I,n=1 − EI,n=1 of the eigenvalues EIn=1 of the 5DHO

model in coordinates (β, γ) (left panel) and (b0, b2) (right panel) and Runge
coe�cients (12) (Ru) by the FEM schemes with LIPs and HIPs of the order p′ =3.

I h h/2 h/4 Ru

0 5.4(-6) 9.2(- 8) 1.5(- 9) 5.88
2 9.6(-6) 1.6(- 7) 2.6(- 9) 5.92
3 1.4(-5) 4.2(- 7) 1.9(- 7) 5.93

0 1.4(-5) 2.8(- 7) 4.7(- 9) 5.62
2 2.2(-5) 4.7(- 7) 8.3(- 9) 5.57
3 2.9(-5) 1.2(- 6) 5.9(- 7) 5.47

I h h/2 h/4 Ru

0 3.1(-4) 8.0(-6) 1.3(- 7) 5.28
2 9.2(-4) 1.5(-5) 2.6(- 7) 5.92
3 2.8(-3) 4.4(-5) 7.6(- 7) 6.03

0 4.8(-4) 1.8(-5) 3.9(- 7) 4.68
2 1.2(-3) 3.3(-5) 7.4(- 7) 5.20
3 3.3(-3) 8.6(-5) 2.1(- 6) 5.27

The calculations are performed at B0 = 1, C2 = 1, and ~ = 1 on the grids
Ωβ,γ = [0(hβ)7]⊗ [0(hγ)π/3] with hβ = h, h/2, h/4 at h = 7/12 and hγ = π/(36) and
Ωb0,b2 = ([0(h0)8]⊗ [0(h2)5]) with h0 = h, h/2, h/4, h2 = 5h0/8 at h = 8/7.



Benchmark calculations of 154Gd in the RMF model

Isolines of V (β, γ) counted
from the minimum
of V (β=0.3875, γ=0)
=−1270.6MeV, g0(β, γ)
and gij (β, γ) of 154Gd
calculated in PC-F1 of
RMF model

T̂vib(β, γ) = − 1
g0(β, γ)

2∑
i,j=1

∂

∂β
gij (β, γ)

∂

∂γ
.



Energy spectrum of 154Gd and quasi-crossings of the energy bands

Energy spectrum of 154Gd. For each state of the bands A, B, E, C, G, and I, three
short bars correspond to the diagonal approximation (left), nondiagonal one
(middle), and experiment (right)[http://www.nndc.bnl.gov/ensdf/].

Band(A) is the Kπ = 0+ ground state band;
Band(B): the �rst excited Kπ = 0+ (β-vibrational) band;
Band(E), Band(J), Band(K): the second, third and forth excited Kπ = 0+ bands;
Band(C): the Kπ = 2+ (γ-vibrational) band;
Band(G): the second excited Kπ = 2+ (βγ-vibrational) band;
Band(I): the Kπ = 4+ band.

The calculations were performed by means the 2DFEM program [Batgerel, B., et al,
Schemes of �nite element method for solving multidimensional boundary value problems, J.
Math. Sci., New York 279, 738 (2024)]



Partial probability density integrals of components ΦnIK (β, γ)

Integrals NK ≡ N I
Kn

from Eq. (13) for
each of A, B, E,
C, G, and I bands
at the values of
K = 0, 2, 4, 6, 8
labelling each of
the curves.

N I
Kn =

∫ βmax

0

∫ π/3

0
g0(β, γ)ΦnIK (β, γ)ΦnIK (β, γ)dβdγ,

I∑
K≥0,even

N I
Kn = 1. (13)

The leading values of diagonal approximation do also con�rm the experimental
classi�cation of each of A, B, E, C, G, and I bands, while a selected agreement with
the experimental data is due to the above restriction of the model parametrization.



Benchmark calculations of 154Gd in the RMF model

The lower part of the 154Gd spectrum
in the diagonal and nondiagonal
approximation for each of A, B, E, C,
G, and I bands used in the
experimental data tables
http://www.nndc.bnl.gov/ensdf/

Isolines of the leading components
ΦnIK = ±0.01,±0.03, . . . of the 154Gd
wave functions for n = 2, 3 and
I = 16, 18, 20 in diagonal approximation.



Benchmark calculations of 154Gd in the RMF model

Band B Band B

Band C Band C

Isolines of the leading components ΦnIK =
±0.01,±0.03, . . . of the 154Gd wave
functions for n = 2, 3 and I = 16, 18, 20
in nondiagonal approximations.
So, in the nondiagonal approximation
at I = 16 and I = 20, the leading
components practically coincide with
those in the diagonal approximation, and
at I = 18, the components are their linear
combinations, belonging to both bands.



Calculated intraband and interband transitions

B(E2) ndiagdiag exp bands

21 → 01 160 159 157 AA
41 → 21 244 243 245
61 → 41 294 293 285
81 → 61 341 339 312

101 → 81 387 385 360

22 → 02 194 193 97.0 BB

02 → 21 68.5 69.2 52.0 BA
22 → 41 45.0 45.5 19.6

23 → 41 0.460 0.248 1.72 CA
23 → 01 3.89 4.14 5.70

Calculated intraband and interband B(E2; Ini → (I − 2)nf ) transitions between A, B
and C bands in Weisskopf units (W.u.) in the nondiagonal approximation (nondiag)
for 154Gd.

In the vicinity of the quasi-crossing point at I = 18, the values of interband
transitions between B and C bands are approximately 200 W.u., in comparison with
small values (< 1 W.u.) beyond the vicinity.
However, the intraband transitions in the B and C bands in the vicinity of the
quasi-crossing point are approximately by two times smaller than beyond the vicinity.



The potential energy surface and energy bands of 238U in PC-PK1 RMF

The 2d FEM grid and PES V (β, γ) using in calculations by 2DFEM program of the π = + energy

levels EIn in the yrast and vibrational bands at normal and superdeformed shapes in 238U marked
by red bars;
Experimental and calculated values from [Libert, J., Girod, M. and Delaroche, J.-P.L.: Microscopic
descriptions of superdeformed bands with the Gogny forces: Con�guration mixing calculations in
the A∼190 mass region, Phys. Rev. C 60, 054301�1�26 (1999)] are shown as black dotted and solid
bars. The insert is for V (β, γ) in PC-PK1 RMF and in Gogny forces models.



The leading components of eigenfunctions of 238U in PC-PK1 RMF
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The leading components of eigenfunctions of 238U in double well potential



Conclusion

• To solve elliptic multidimensional BVPs, the high-precision FEM schemes using
Hermite interpolation polynomials on parallelepipeds are elaborated and applied to
solve the BVP arising in the collective models of atomic nuclei.
• The e�ciency of the algorithms and programs is demonstrated by benchmark
calculations of the lower part of the quadrupole rotational-vibrational spectrum of
the 5DHO model.
• The 2DFEM program benchmark calculations in PC-F1 or PC-PK1
parametrizations of the self-consistent RMF model of 154Gd or 238U isotopes are in
an agreement with the single or double GTM basis sets calculations for single or
double potential wells.
• The calculations of the quadrupole spectrum EIn of 154Gd isotope and
corresponding the reduced probabilities of electric interband and intraband B(E2)
transitions for the model based on RMF revealed a possibility of quasi-crossing of
energy levels belonging to di�erent bands at some values of the nucleus spin.
• The developed approach and 2DFEM programs provide a base for adapting
multidimensional FEM programs to solving the bound state problems of the
rotational-vibrational spectrum, which are applicable in generalizations of the
geometric quadrupole collective model, the self-consistent relativistic mean-�eld
(RMF) model and the quadrupole-octupole six-dimensional collective model of
atomic nuclei.

Thank you for your attention!


