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Difference schemes

The finite difference method proposes replacing the system of
differential equations

dxi
dt

= fi(x1, . . . , xn), i = 1, . . . , n,

or, for short,
dx

dt
= f(x), (1)

with a system of algebraic equations

gi(x, x̂,∆t) = 0, i = 1, . . . , n, (2)

relating the value x of the solution at some moment in time t with
the value x̂ of the solution at the moment in time t + ∆t.
The system of the algebraic equation (2) itself will be called a
difference scheme for a system of the differential equation (1).
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Discrete models

In mechanics, both old and new, the quantity dt has often been
treated as a finite increment, and it was implied that Newton’s
equations were actually difference equations [Feynman].

Example
The explicit Euler scheme

x̂− x = f(x)∆t

for linear oscillator preserves the energy H = x2 + y2 only at
∆t→ 0.

The problem is that classical difference schemes (explicit
Runge-Kutta schemes) are not rich in algebraic properties. We
describe properties of discrete models by looking back at
continuous models.
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Systems with quadratic Hamiltonian

The midpoint scheme perfectly imitates a Hamiltonian system

dx

dt
=

∂H

∂y
,

dy

dt
= −∂H

∂x
(3)

with a quadratic Hamiltonian H, for example, a harmonic oscillator
with Hamiltonian H = x2 + y2.

According to Cooper’s theorem, the energy integral is preserved
exactly on the scheme, and the approximate solution itself is a
sequence of points xn = (xn, yn) of the circle x2 + y2 = C.
Each step of the approximate solution is a rotation by an angle

∆u =

xn+1∫
xn

dx√
C − x2

,

which does not depend on n.
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Nonlinear systems

If f is not linear function of x, than equations

x̂− x = f

(
x̂ + x

2

)
∆t

define a multiple-valued correspondence between x and x̂ spaces.
Multiple values of x̂ correspond to the same value x and vice versa.
The geometric meaning of the extra roots is not clear. In numerical
analysis, they are discarded.
They do not allow to investigate the algebraic properties of the
midpoint scheme. This scheme is probably poor in algebraic
properties.

5 / 16



Reversible schemes

Newton’s equations must define a one-to-one correspondence
between the initial and final positions of a dynamical system.
Difference schemes define a correspondence between the initial and
final positions of the system, which is described by algebraic
equations. Such a correspondence will be one-to-one if and only if
it is birational.

Definition
We call a difference scheme reversible if it specifies a birational map
between an n-dimensional x-space and an n-dimensional x̂-space.

We believe, that the «reversibility» is more significance than
conservativity or symplectivity.
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Construction of reversible schemes

Any dynamical system with a quadratic right-hand side

dx

dt
= f(x)

can be approximate by the equation

x̂− x = F∆t,

which is linear with respect to x and x̂. Thus x̂ is a rational function
of x and vice verse x is a rational function of x̂.

Example

dx

dt
= 1 + x2 → x̂− x = (1 + x · x̂)∆t.
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An unconventional integrator of W. Kahan

Firstly, indicated method to construct reversible schemes was
presented by William "Velvel" Kahan in 1993 at conference in
Ontario.

I have used these unconventional methods for 24 years
without quite understanding why they work so well as they
do, when they work. That is why I pray that some reader
of these notes will some day explain the methods’ behavior
to me better than I can, and perhaps improve them.

In 1994 Sanz-Serna applied the method to Volterra-Latka system
and explain the successes of the method to the inheritance of the
symplectic structure

dx ∧ dy

xy
.

Ref.: J.M. Sanz-Serna // Applied Numerical Mathematics 16
(1994) 245-250.
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Systems with cubic Hamiltonian

If the Hamiltonian is a cubic polynomial, then the exact solution to
the continuous model lies on a third degree curve

H(x, y) = c,

whose genus is 1. Thus the quadrature∫
dx

Hy(x, y)
= t + C

on the curve H is elliptic integral of the 1st kind.
If the invariant curve is closed, the functions x(t), y(t) are elliptic,
one of the periods is real and we see periodic movement along the
oval on the phase plane xy.
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Systems with cubic Hamiltonian, external properties

Kahan’s scheme perfectly imitates a Hamiltonian system with a
cubic Hamiltonian H, for example, a elliptic ℘-oscillator.

According to 1st Celledoni’s theorem, the symplectic structure
is inherit, i.e.

dx̂ ∧ dŷ = (1 + O(∆t))dx ∧ dy.

According to 2nd Celledoni’s theorem, the energy integral is
inherit, thus the approximate solution itself is a sequence of
points xn = (xn, yn) of an elliptic curve f(x, y,∆t) = c.

Ref.: Suris et al. // Proc. R. Soc. A. 2019. 475: 20180761
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Systems with cubic Hamiltonian, quadrature

Consider more closely the narrowing of Cremona map to the
invariant curve f(x, y,∆t) = c.
Using constructions from Picard’s theorem, we can prove that the
difference scheme can be again represented using quadrature

x̂∫
x

v(x, y,∆t)dx = ∆u(∆t),

where vdx1 is an elliptic integral of the 1st kind on invariant curve
and, of course,

vdx→ dx

Hy
(at∆t→ 0).

Ref.: 1.) Malykh et al. // Mathematics 2024, 12 (1), 167; 2.)
Malykh et al. // Zapiski sem. POMI. 2023

11 / 16



Systems with cubic Hamiltonian, internal properties

Consequences of quadrature representation:

1 The approximate solution
can be represented using
an elliptic function of a
discrete argument.

2 We can pick a step ∆t so
that O(x) is a periodic
sequence.
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The reversible difference scheme imitates all the known properties
of the system with cubic Hamiltonian.
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Points at infinity

If at some value k the denominator of the transformation becomes
zero, then the point xk+1 will be infinitely remote. Thus we
consider x as a point in the projective space Pn.

Example (℘-oscillator)


dx

dt
= y,

d

dt
y = 6x2 − 1,

x(0) = 1, y(0) = 2

The exact solution is periodic
and has pols of 2nd degree.

The approximate solutions describe correct the behavior at infinity.
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The main difference between discrete and continuous models

Newton’s equations must define a one-to-one correspondence
between the initial and final positions of a dynamical system.
The system with cubic Hamiltonian define birational transformation
on the integral curve H(x, y) = C, which cannot be continued to
the Cremona transformation of all planes xy (it’s Hermite-Klein
discussion!).
However, we can approximate the system so that transition from
layer to layer is carried out by the Cremona transformation of the
entire xy plane.
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Further investigations

1 Using Appelroth’s quadratization, we extended Kahan’s
approach to systems with polynomial right-hand sides1.

2 For quadratic systems, approximate trajectory points are
sometimes lined up and sometimes into more complex
structures. We calculated their fractal dimension 2.

3 When discretizing the Navier-Stokes equations, dynamic
systems with a quadratic right-hand side are obtained. We
implemented Kahan’s method for such systems in
FreeFem++3.

1Lapshenkova, L., RUDN, 2024; Malykh et al., Math. 2024. Vol. 12, no. 7.
DOI: 10.3390/math12172725

2Kadrov, V., RUDN 2024
3Dulatov, I., RUDN, 2024.
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