Mathematical Modeling and Computational Physics

ML-Based Optimum Number of CUDA Streams for the GPU Implementation of the Tridiagonal Partition Method

Milena Veneva, Toshiyuki Imamura

✓ RIKEN Center for Computational Science

 $\checkmark \boxtimes$ milena.p.veneva@gmail.com \mathbb{R} Milena_Veneva \mathbb{m} mveneva

 \checkmark in collaboration with the Joint Institute for Nuclear Research, supervisor **Dr. Alexander Ayriyan**

October 2024, Yerevan, Armenia.

Tridiagonal partition method (0/3)

 $0. \ \mbox{Starting from the initial SLAE}$ with the following coefficient matrix.

$(\times$	\times														(x_0)		(y_0)
×	\times	×													x_1		y_1
	\times	×	×												x_2		y_2
		×	×	×											x_3		<i>y</i> 3
			×	\times	\times										X 4		y 4
				\times	\times	×									x_5		y_5
					\times	×	×								x_6		y 6
						\times	×	\times							<i>x</i> ₇	=	<i>y</i> 7
							×	\times	\times						x_8		<i>y</i> 8
								\times	\times	\times					X 9		y 9
									\times	\times	\times				<i>x</i> ₁₀		y ₁₀
										\times	\times	\times			<i>x</i> ₁₁		y ₁₁
											\times	\times	×		x_{12}		y ₁₂
												\times	×	×	x ₁₃		y 13
$\langle \rangle$													×	×/	$\langle x_{14} \rangle$		y_{14}

[1] Austin T. M., Berndt M., and Moulton J. D. A memory efficient parallel tridiagonal solver, pp.1–13, Preprint

Tridiagonal partition method (1a/3)

1a. Partitioning.

$(\times$	×														(x_0)		(y_0)
×	\times	×													x_1		y 1
	\times	×	×												x_2		y_2
		×	×	\times											x_3		<i>y</i> 3
			×	\times	\times										x_4		y ₄
				×	×	×									x_5		y 5
					×	\times	×								x_6		<i>у</i> 6
						\times	×	\times							<i>x</i> ₇	=	y 7
							×	\times	\times						x_8		y 8
								\times	\times	×					X 9		y 9
									×	×	×				<i>x</i> ₁₀		<i>y</i> ₁₀
										×	\times	\times			<i>x</i> ₁₁		y ₁₁
											×	×	\times		x_{12}		y ₁₂
												\times	\times	×	<i>x</i> ₁₃		y 13
													\times	×/	$\langle x_{14} \rangle$		y_{14}

Tridiagonal partition method (1b/3)

1b. Obtaining the interface equations (on the device).

2. Assembling the interface system and solving it with the Thomas method (on the host).

3. Substituting the already found unknowns corresponding to the \boxtimes coefficients, and solving the rest of the tridiagonal sub-systems (on the device).

Computational experiment

- on the basis of NVIDIA GPU RTX 2080 Ti;
- SLAE sizes: 10^i , 2.5×10^i , 4×10^i , 5×10^i , 7.5×10^i , and 8×10^i , $i = \overline{3,7}$;
- Parameters: the sub-system size was set to m = 10;
 256 CUDA threads within a block were used; precision FP64,
 __NO__WD interface option; no recursions; no overwriting of RHS;
- number of CUDA streams: powers of 2, up to 32 (hardware working queues);
- event synchronization when collecting the times.

[2] Werkhoven B. van, Maassen J., Seinstra F. J., and Bal H. E., Performance models for CPU-GPU data transfers,

14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 11-20 (2014).

$$T = \left(T_1^{H2D} + T_1^{COMP} + T_1^{D2H}\right) + T_2^{H} + \left(T_3^{H2D} + T_3^{COMP} + T_3^{D2H}\right),$$

where T_i is the memory transfer/kernel time of Stage $i, i = \overline{1, 3}$.

$$T_{\rm str} = T_1^{H2D} + \frac{T_1^{COMP} + T_1^{D2H} + T_3^{H2D} + T_3^{COMP}}{\operatorname{num_str}} + T_2^{H} + T_3^{D2H} + T_{\rm overhead},$$

where $T_{\rm overhead}$ is the overhead from the creation of CUDA streams.

 $T_{\text{overhead}} = \tau \times \text{num_str} \text{ (according to [2])},$

where τ is the time for creating one stream ($\tau = 0.004448$ ms for NVIDIA GPU RTX 2080 Ti). Hence,

$$\mathrm{num_str_opt} = \sqrt{\frac{T_1^{COMP} + T_1^{D2H} + T_3^{H2D} + T_3^{COMP}}{\tau}}$$

SLAE size	T_1^{COMP}	T_1^{D2H}	T_3^{H2D}	T_3^{COMP}	sum	opt num_str Gómez-Luna	opt num_str actual
4×10^{3}	0.221312	0.014848	0.006592	0.030688	0.27344	7.8	1
4×10^{4}	0.216544	0.057312	0.015456	0.038112	0.327424	8.6	1
4×10^{5}	0.393184	0.402944	0.102784	0.205408	1.10432	15.8	4
4×10^{6}	1.99398	3.89741	0.975392	2.1305	8.997282	45.0	32
4×10^{7}	17.4515	38.8368	9.60672	20.9816	86.87662	139.8	32

[3] Gómez-Luna J., González-Linares J. M., Benavides J. I. and Guil N., Performance models for CUDA streams on

NVIDIA GeForce series, J. Parallel Distrib. Comput., 72, 9, pp. 1117-1126 (2011).

T_overhead for different SLAE sizes, on different number of streams

Mathematical model for sum

Model (regression analysis, splitting ratio 3 : 1, shuffle turned on):

 $sum_model = 0.0000021890017149 \times SLAE_size + 0.1470644998564126.$

 $\label{eq:R2: training - 0.9999813476643502, test - 0.9999942108504311. \\ The mean squared error (MSE) is 0.02 (test). \\$

Mathematical model for T_overhead

$$T_{overhead} = (T_{str} - T_{non_str}) + \frac{\text{num_str} - 1}{\text{num_str}} \times \text{sum}.$$

Algorithm: the optimum number of streams comes when $T_{overhead}$ is smaller than the second term on the right-hand side of the equation above, and the difference between them is the biggest among the ones that fulfill the inequality.

Models (SciPy routine curve_fit, the form of the functions is preset, splitting ratio 3:1, shuffle turned on; *small* for SLAE sizes $\leq 10^6$, and *big* - sizes $> 10^6$):

$$\begin{split} & T_overhead_model_small = 0.0000002245645331 \times SLAE_size \\ & + 0.6009426920043296 \times \log_{10}(num_streams) - 0.0605183610625299, \\ & T_overhead_model_big = (0.0000000356594859 \times SLAE_size \\ & + 0.0522781620855163) \times \log_2(num_streams^{\frac{4}{3}}) + 0.3941472844770443. \end{split}$$

T_overhead for different SLAE sizes, on different number of streams

Models' metrics

set	metric	model_small	model_big
training	R-squared	0.9531711290769591	0.9933780389080090
	MSE = mean squared error	0.0050126881205798	0.2451169015984794
	$RMSE = \sqrt{MSE}$	0.0708003398337877	0.4950928211946518
test	R-squared	0.9549695579010460	0.9896761975222511
	MSE = mean squared error	0.0044441139999724	0.1447752928068124
	$RMSE = \sqrt{\mathrm{MSE}}$	0.0666641882870588	0.3804934858927448

SLAE size	actual	predicted	size	actual	predicted	size	actual	predicted
10 ³	1	1	4×10^{5}	4	4	107	32	32
4×10^{3}	1	1	5×10^{5}	8	4	2.5×10^{7}	32	32
5×10^{3}	1	1	8×10^{5}	8	8	4×10^{7}	32	32
8×10^{3}	1	1	10^{6}	8	8	5×10^{7}	32	32
10 ⁴	1	1	2.5×10^{6}	16	16	7.5×10^{7}	32	32
4×10^{4}	1	1	4×10^6	32	32	8×10^{7}	32	32
5×10^{4}	1	1	5×10^6	32	32	10 ⁸	32	32
8×10^{4}	1	1	7.5×10^{6}	32	32			
10 ⁵	1	2	8×10^{6}	32	32			

- SLAE size 10⁵: 2 vs. 1 stream time diff = 1.239040 - 1.230176 = 0.008864 ms.
- SLAE size 5×10^5 : 4 vs. 8 streams time diff = 4.046112 4.029888 = 0.016224 ms.

Performance improvement when using optimum number of CUDA streams: up to 1.30 (for SLAE sizes 8×10^7 and 10^8).

Thank you for your attention!

Acknowledgements: R-CCS team (RIKEN), Dr. Alexander Ayryan (JINR).