
DDS
DYNAMIC DEPLOYMENT SYSTEM

Andrey Lebedev (GSI)
Anar Manafov (GSI)

September 13, 2018
GRID 2018 @ JINR, Dubna

1

Motivation

2

In order to manage such an environment we need to
create a system, which is able to spawn and control

hundreds of thousands of different tasks which are tied
together by a topology. It can run on online clusters or

computing clusters, which use different resource
management systems (RMS) or even on a laptop and

can be controlled by external tools.

DDS is being developed within the ALFA framework (an ALICE-FAIR project).

ALICE and FAIR experiments are moving from traditional
one process to multiprocessing tools for simulation and

reconstruction with topology and graphs.

Basic concepts
• A single responsibility principle command line tool-set

and API;
•  users’ task is a black box – it can be an executable or a

script;
• watchdogging;
•  rule-based execution of tasks;
•  plug-in system to abstract from RMS including SSH and

a localhost plug-ins;
•  doesn’t require pre-installation and pre-configuration

on the worker nodes;
•  private facilities on demand with isolated sandboxes;
•  key-value propagation and messaging.

3

The contract

4

The system takes so called “topology file” as the input.
Users describe desired tasks and their dependencies using this file.
Users are also provided with a Web GUI to create topologies.

<topology id="myTopology"> !
!
 <decltask id="task1"> !

 <exe reachable="false">/Users/andrey/Test1.sh –l</exe>!
</decltask> !

!
<decltask id="task2"> !
 <exe>/Users/andrey/DDS/Test2.sh</exe>!
</decltask>!
!
<main id="main"> !
 <task>task1</task>!

 <task>task2</task>!
</main>!
!

</topology> !

Declaration of user
tasks. Commands with
command line argument
are supported.

Main block defines
which tasks has to be
deployed to RMS.

More info: http://dds.gsi.de/doc/nightly/topology.html

DDS workflow

5

dds-topology	–activate	topology.xml	

dds-session	start	

dds-submit	-r	ssh	-c	ssh_hosts.cfg	

dds-topology	–update	new_topology.xml	

Server

dds-commander

WN

WN

dds-scout dds-agent

dds-scout dds-agent

Task1

Task2

External
control tool

Highlights of the DDS features
•  key-value propagation,
• Messaging (custom commands) for user tasks and ext.

utils,
• RMS plug-ins,
• Watchdogging

•  … many more other features

•  more details here:
https://github.com/FairRootGroup/DDS/blob/master/ReleaseNotes.md

6

Property propagation

7

The feature allows user’s tasks to exchange and synchronize the
configuration (key-value) dynamically at runtime.

2 tasks à static configuration with shell script
Many tasks à dynamic configuration with DDS

Use case:
synchronize the startup of the user’s tasks, for example, multiprocessing
reconstruction based on FairMQ framework.

DDS is highly optimized for massive key-value transport and has a
decentralized architecture:
•  Internally small key-value messages are accumulated and transported as a

single message;
•  DDS agents use shared memory for local caching of key-value properties.

Messaging (custom commands)

8

Server

dds-commander

dds-agent

dds-agent

Task1

Task2

External
tool

Messages

Messages

Messages

Custom command
requesting

information from
tasks

Reply with
requested
information

// Subscribe on custom commands
ddsCustomCmd.subscribeCmd(...);

// Send custom command
ddsCustomCmd.sendCmd(...);

8

External process
which communicates

with user tasks

RMS plug-in architecture

9

Server
dds-commander dds-submit

dds-submit-ssh

SSH plugin

-r localhost
-r ssh
-r slurm
-r mesos
-r pbs
-r lsf

dds-submit-slurm

Slurm plugin

dds-submit-mesos

Mesos plugin

Cluster

Slurm

Mesos

DDSScout

DDSScout

DDSScout

DDSScout

DDS protocol

1.  dds-commander starts a plug-in based on the dds-submit parameter,
2.  plug-in contact DDS commander server asking for submissions details,
3.  plug-in deploy DDSScout fat script on target machines,
4.  plug-in execute DDSScout on target machines.

10000 feet view

10

From user’s perspective

11

dds-session !
dds-agent-cmd!
dds-custom-cmd!

dds-info !
dds-prep-
worker !

dds-server !
dds-stat !

dds-submit !
dds-test !

dds-topology !
dds-user-
defaults !

CIntercomService service;
CKeyValue
keyValue(service);

// Subscribe on key
update events
keyValue.subscribe([](!
 const string&
_propertyID,
 const string& _key,
 const string& _value)
{…});

// Start listening to
events we have subscribed
on
service.start();

Topology CLI tools Intercom API

<topology
id="myTopology"> !
 [... Definition
of tasks,
properties, and
collections ...] !
 <main
name="main"> !
 [… Definition
of the topology
itself, including
groups...] !
 </main> !
</topology> !

Usage scenarios
• Online

•  Single (multiple) DDS session managing many processes;
•  Goal ~100k processes

•  Tested up to 20k processes due to limited hardware

• Offline
•  Many DDS sessions

•  Each session manages small (~100) number of processes;
•  Computing farms with Slurm, PBS etc.;
•  GRID (AliEn)

•  Each GRID job is a DDS session;

•  Local
•  on a laptop, for development and debugging.

12

DDS v2.0
• Releases - DDS v2.0

•  http://dds.gsi.de/download.html
• DDS Home site:

•  http://dds.gsi.de
• User’s Manual:

•  http://dds.gsi.de/documentation.html
• Continues integration:

•  http://demac012.gsi.de:22001/waterfall
• Source Code:

•  https://github.com/FairRootGroup/DDS
•  https://github.com/FairRootGroup/DDS-user-manual
•  https://github.com/FairRootGroup/DDS-web-site
•  https://github.com/FairRootGroup/DDS-topology-editor

13

Backup slides

14

Shared memory communication
• Shared memory channel

•  Exactly the same event-based API as DDS network channel;
•  Duplex and many-to-many communication;
•  Asynchronous read and write operations;
•  Caching of messages in the queue for guaranteed delivery;
•  dds-protocol;
•  Efficient message forwarding.

•  Implementation
•  boost::message_queue: message transport via shared memory;
•  dds-protocol: message definition, encoding, and decoding;
•  boost::asio: the proactor design pattern and an efficient thread pool.

15

Communication channels
•  Network and shared memory channels;
•  Unified event-based API for application and protocol events;
•  Compile time check for errors where possible;

16

client->registerHandler<EChannelEvents::OnConnected>(
 [](const SSenderInfo& _sender) { !
 // User’s code!
});

BEGIN_MSG_MAP(CInfoChannel)
 MESSAGE_HANDLER(cmdREPLY_PID, on_cmdREPLY_PID) !
 MESSAGE_HANDLER(cmdREPLY_AGENTS_INFO, on_cmdREPLY_AGENTS_INFO)
END_MSG_MAP()

client->registerHandler<cmdUPDATE_TOPOLOGY>(
 [](const SSenderInfo& _sender, !
 SCommandAttachmentImpl<cmdUPDATE_TOPOLOGY>::ptr_t _attachment) {
 // User’s code
});

Subscribe to
messages

Subscribe to
channel events

Subscribe to
messages

Agent

A lobby

17

DDS
server

Member
SM

Intercom SM Agent

Leader

Task
SM Agent. Member.

SM
Intercom

SM
Agent

Task
SM

…

Network
commander

SM
Forwarder

Agent. Member.

SM
Intercom

SM
Agent

Task
SM

Lobby leader election
A lobby leader election: “First in takes all”.

18

Semaphore

SM
Forwarder

Member

SM
Agent

Agent

Leader

SM
Leader

Agent.
Member

SM
Agent

Agent.
Member

SM
Agent

•  A leader is the one who first owns a
SID semaphore;

•  Each lobby member sends a special
message to the leader with its
connection information;

•  The leader opens a channel and
sends back a confirmation;

•  Than a member sends a “lobby
member handshake” message to
Commander via SM Forwarder
channel of the leader;

•  Commander adds the agent to the
list of approved agents;

•  The communication is established.

…

Lobby based deployment
• One network connection per host;

•  Local communications only via DDS
shared memory channels;

• Unified agents and an unified lobby
leader election;

• Efficient message forwarding;

•  dds-protocol via network and shared
memory channels;

• Handshake- and token-based
authentication;

19

DDS
Commander

server

Host

Host

