DDS

DYNAMIC DEPLOYMENT SYSTEM

Andrey Lebedev (GSI)
Anar Manafov (GSI)

September 13, 2018
GRID 2018 @ JINR, Dubna

Motivation % FAIR

ALICE and FAIR experiments are moving from traditional
one process to multiprocessing tools for simulation and
reconstruction with topology and graphs.

In order to manage such an environment we need to
create a system, which is able to spawn and control
hundreds of thousands of different tasks which are tied
together by a topology. It can run on online clusters or
computing clusters, which use different resource
management systems (RMS) or even on a laptop and
can be controlled by external tools.

DDS is being developed within the ALFA framework (an ALICE-FAIR project).

Basic concepts

A single responsibility principle command line tool-set
and API;

users’ task is a black box — it can be an executable or a
script;

watchdogging;
rule-based execution of tasks:

plug-in system to abstract from RMS including SSH and
a localhost plug-ins;

doesn’t require pre-installation and pre-configuration
on the worker nodes;

private facilities on demand with isolated sandboxes;
key-value propagation and messaging.

The contract

The system takes so called “topology file” as the inpuit.
Users describe desired tasks and their dependencies using this file.
Users are also provided with a Web GUI to create topologies.

<topology id="myTopology">

<decltask id="taskl">
<exe reachable="false">/Users/andrey/Testl.sh —l</exe>

</decltask>
<decltask id="task2"> e e
<exe>/Users/andrey/DDS/Test2.sh</exe> L Dedammonofuser.
</decltask> : tasks. Commands with
-, command line argument
<main id="main"s .., -.”aﬁasuppoﬂed. .
<task>taskl</taSks --.... ~ oeeeeeeel T
<task>task2</task> Lo
</main> ": Main block defines
L which tasks has to be
</topology> x“.deMOyedtoFﬂwS.

® e o ®

.........

More info: http://dds.gsi.de/doc/nightly/topology.html

DDS workflow

External
control tool

(o I

Lo I

dds-session start

dds-submit -r ssh -c ssh hosts.cfg
dds-topology -activate topology.xml
dds-topology -update new topology.xml

R
Highlights of the DDS features

- key-value propagation,

- Messaging (custom commands) for user tasks and ext.
utils,

- RMS plug-ins,

- Watchdogging

- ... many more other features

- more details here:
https://github.com/FairRootGroup/DDS/blob/master/ReleaseNotes.md

Property propagation

The feature allows user’s tasks to exchange and synchronize the
configuration (key-value) dynamically at runtime.

2 tasks - static configuration with shell script
Many tasks = dynamic configuration with DDS

Use case:
synchronize the startup of the user’s tasks, for example, multiprocessing
reconstruction based on FairMQ framework.

DDS is highly optimized for massive key-value transport and has a

decentralized architecture:

» Internally small key-value messages are accumulated and transported as a
single message;

 DDS agents use shared memory for local caching of key-value properties.

Messaging (custom commands)

Custom command ’

requesting -
informationfrom ..oO...O..0...0............
tasks Y
..... . S e rve r Messages
...... :
: m—
Mességes
External —_—
%
External process .

which communicates
with user tasks ..+ °.

// Subscribe on custom commands
ddsCustomCmd. subscribeCmd (...);

Reply with
requested
information

........
000000000

// Send custom command
ddsCustomCmd.sendCmd (...) ;

dds-submit (—‘—) dds-commander . Cluster .
: A7 :
-r localhost : g .o S ceeecscscescsccscec
-r Ssh : ° . . /
-r slurm : . Slurm .
-r mesos g® 0000 s s e s . z o
-r pbs : . SSH plugln P 7 2 ittt
. 7’
ol JUUUN g SR .
DDS protocol °:::S:I:::::I::::::' 7 ©S0S .
: urm plugin P -7 ..-
—>- e
PSPPI 0DSScout
* Mesos plugln -,
_>
1. dds-commander starts a plug-in based on the dds-submit parameter,
2. plug-in contact DDS commander server asking for submissions details,
3. plug-in deploy DDSScout fat script on target machines,
4. plug-in execute DDSScout on target machines.

10000 feet view

User defaults engine (configuration)

Log engine

DDS Core - event-based (notifiocation engine), async architecture

.. B
From user’s perspective

Topology CLI tools Intercom API

CIntercomService service;
CKeyValue
keyValue(service);

dds-session
dds-agent-cmd
dds-custom-cmd

<topology
id="myTopology'">
[... Definition

service.start();

I (. I : I
| | I I |
I 1! I '
I (. I I
| | I I |

I _i I
: of tasks, : I dds-1info "1 // subscribe on key I
| properties, and P dds-prep- : I update events I
| collections ...] P worker , | keyvalue.subscribe([](I
: <main Pl dds-server ;! const string& I
, hame="main'"> P dds-stat : : _propertyID, I
[[.. Definition 1! dds-submit I const string& _key, I
I of the topology I : dds—test Ly s const string& _value) [
: itself, including : I dds-topology : I R :
: groups.:.] P dds-user- I : // Start listening to I
I </main> | defaults Iy events we have subscribed 1
1 </topology> I : I on I
[l ['

Usage scenarios

- Online
- Single (multiple) DDS session managing many processes;

- Goal ~100k processes
- Tested up to 20k processes due to limited hardware

- Offline

- Many DDS sessions
- Each session manages small (~100) number of processes;

- Computing farms with Slurm, PBS etc.;
- GRID (AliEn)
- Each GRID job is a DDS session;
- Local
- on a laptop, for development and debugging.

DDS v2.0

Releases - DDS v2.0
http://dds.gsi.de/download.html

DDS Home site:
http://dds.gsi.de

User’s Manual:
http://dds.gsi.de/documentation.html

Continues integration:
http://demac012.gsi.de:22001/waterfall

Source Code:
https://github.com/FairRootGroup/DDS
https://github.com/FairRootGroup/DDS-user-manual

https://github.com/FairRootGroup/DDS-web-site
https://github.com/FairRootGroup/DDS-topology-editor

Backup slides

Shared memory communication

- Shared memory channel
- Exactly the same event-based APl as DDS network channel;
- Duplex and many-to-many communication;
- Asynchronous read and write operations;
- Caching of messages in the queue for guaranteed delivery;
- dds-protocol;
- Efficient message forwarding.

- Implementation
- boost::message queue: message transport via shared memory;
- dds-protocol: message definition, encoding, and decoding;
- boost::asio: the proactor design pattern and an efficient thread pool.

Communication channels

- Network and shared memory channels;
- Unified event-based API for application and protocol events;
- Compile time check for errors where possible;

Subscribe to
messages

Subscribe to
channel events

Subscribe to
messages

client->registerHandler<cmdUPDATE_TOPOLOGY>(
[1(const SSenderInfo& _sender,
SCommandAttachmentImpl<cmdUPDATE_TOPOLOGY>::ptr_t _attachment) {
// User’s code

)

client—>registerHandler<EChannelEvents::0nConnected>(
[1(const SSenderInfo& _sender) {
// User’s code
3

BEGIN_MSG_MAP(CInfoChannel)
MESSAGE_HANDLER(cmdREPLY_PID, on_cmdREPLY_PID)
MESSAGE_HANDLER(cmdREPLY_AGENTS_INFO, on_cmdREPLY_AGENTS_INFO)
END_MSG_MAP()

/
Agent. Member. /

-

Lobby leader election
A lobby leader election: “First in takes all”.

- Aleader is the one who first owns a
SID semaphore;

- Each lobby member sends a special
message to the leader with its
connection information;

- The leader opens a channel and
sends back a confirmation;

- Than a member sends a “lobby
member handshake” message to
Commander via SM Forwarder
channel of the leader;

- Commander adds the agent to the
list of approved agents;

- The communication is established.

N
Lobby based deployment

Host 0O : i
- One network connection per host;
i @ - Local communications only via DDS
shared memory channels;
. @
R ' - Unified agents and an unified lobby
Veeeossseaonns, I .
; Sbs : leader election;
Commander

- Efficient message forwarding;

eeeeaeen. . - dds-protocol via network and shared
' ost memory channels;

- Handshake- and token-based

H
-l e .
- authentication:
B e .

