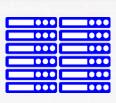
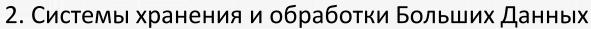


Niagara & Angara: Interconnect solution



Коммуникационная сеть Ангара Назначение и области применения

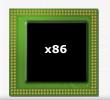

Назначение:

Коммуникационная сеть Ангара предназначена для осуществления передачи данных между узлами вычислительных систем с высокой скоростью и малой коммуникационной задержкой

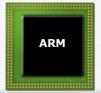
Области применения:

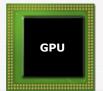
1. Вычислительные кластеры для расчетно-информационных задач, математического моделирования и виртуального прототипирования, решения задач инженерного анализа

3. В качестве коммуникационной сети вычислительного поля в центрах обработки данных (ЦОД)

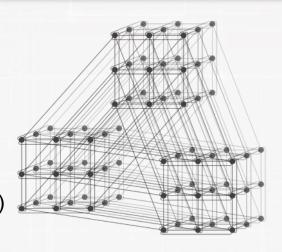


Коммуникационная сеть Ангара Основные характеристики




Ключевые особенности:

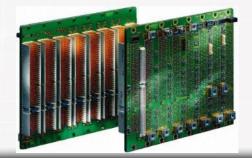
- Топология сети: 1D..4D-тор
- До 8 каналов связи с соседними узлами
- Прямой доступ в память удаленного узла (RDMA)
- Прямой доступ в память GPU (GPUDirect)
- Адаптивная передача пакетов
- Задержка на MPI ping-pong: 0,85/ 1,54 мкс (x86/Эльбрус-8С)
- Задержка на хоп: 130 нс
- Масштабирование: до 32К узлов
- Энергопотребление до 20 Вт
- Различные физические среды передачи данных



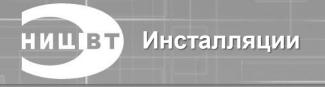
Варианты сетевого оборудования Ангара

1. Высокопроизводительное решение на базе FHFL адаптера и Samtec кабеля

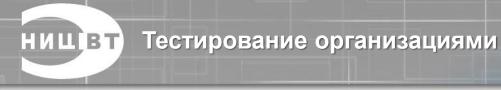
2. Универсальное решение на базе 24-портового коммутатора, low-profile адаптера и


СХР кабеля

3. Заказное решение на базе объединительной платы и оптических кабелей



Стек программного обеспечения


- Поддержка ОС: Astra Linux SE 1.3 1.5, ОС «Эльбрус», OpenSUSE/SLES 11 SP3/4, CentOS 6.0-7.3, ОС «Нейтрино» 6.5, Версия ядра Linux от 2.6.21 до 3.16.0
- Поддержка компиляторов языков Fortran 77/90/95 (GNU, Intel), C/C++ (GNU, Intel)

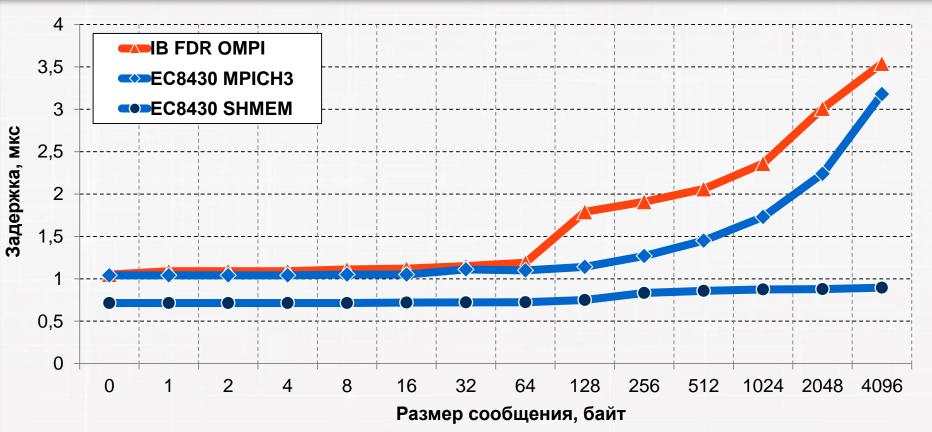
- Ангара-К1: 36 вычислительных узлов (2014)
 - 12 узлов с 1 процессором Intel Xeon E5-2660 (8 ядер, 2.2 ГГц)
 - 24 узла с 2 процессорами Xeon E5-2630 (6 ядер,
 2.3 ГГц)
 - 64 ГБ
 - 3D-тор 4x3x3
 - Удаленный доступ (более 40 сторонних пользователей)
- ОИВТ РАН: 32 вычислительных узла (4 кв. 2016)
 - 1 процессор Intel Xeon E5-1650 v3 (6 ядер, 3.0 ГГц)
 - Nvidia GeForce GTX 1070
 - DDR4 16 ГБ
 - 4D-тор 4х2х2х2

ИВМ РАН

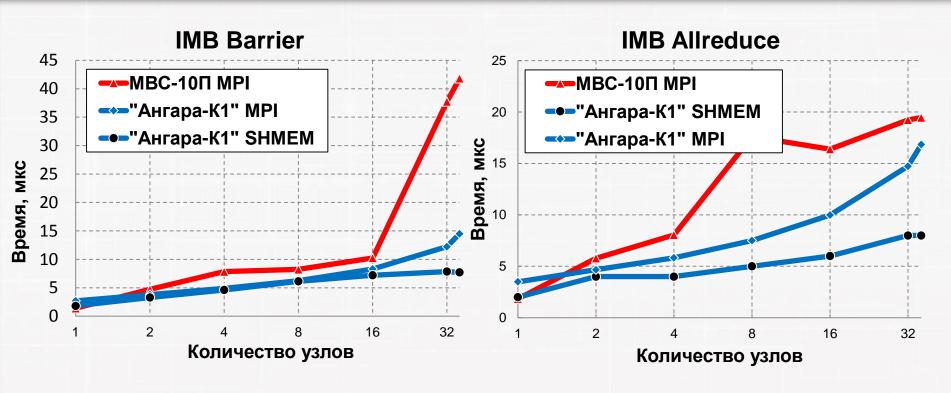
идсту со РАН

Оценочное тестирование

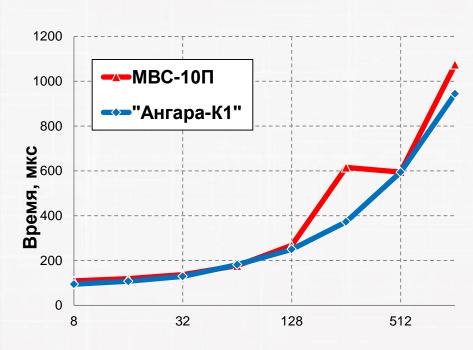
Ангара-К1 и МВС-10П (МСЦ РАН)



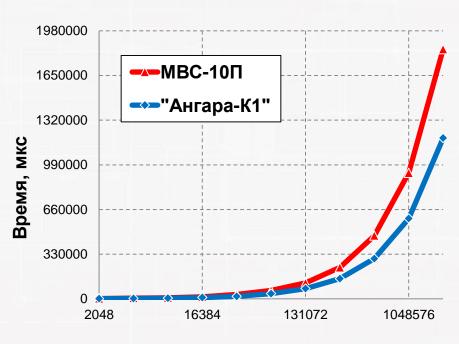
		Ангара-К1	МВС-10П	
Узлы	Α	2x Xeon E5-2630 по 6 ядер, 2.3 ГГц	2x Xeon E5-2690	
	В	Xeon E5-2660 по 8 ядер, 2.2 ГГц	по 8 ядер, 2.9 ГГц	
Количество узлов		24*A+12*B = 36	207 (36)	
Память узла		64 ГБ	64 ГБ	
Сеть		Ангара 3D-тор 3х3х4	Infiniband 4xFDR Fat Tree	



Ангара vs IB FDR 2 узла – задержка на MPI (osu_latency)



размер сообщения 8 байт

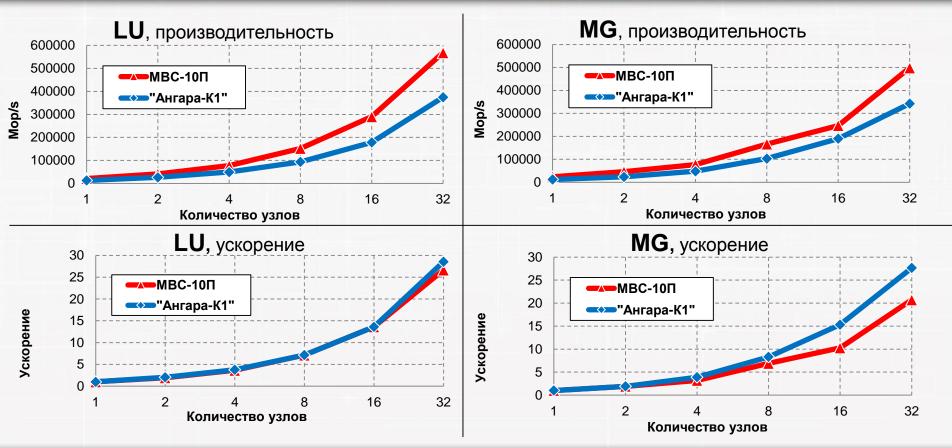


Коллективные операции IMB AlltoAll, 32 узла

Размер сообщения, байт

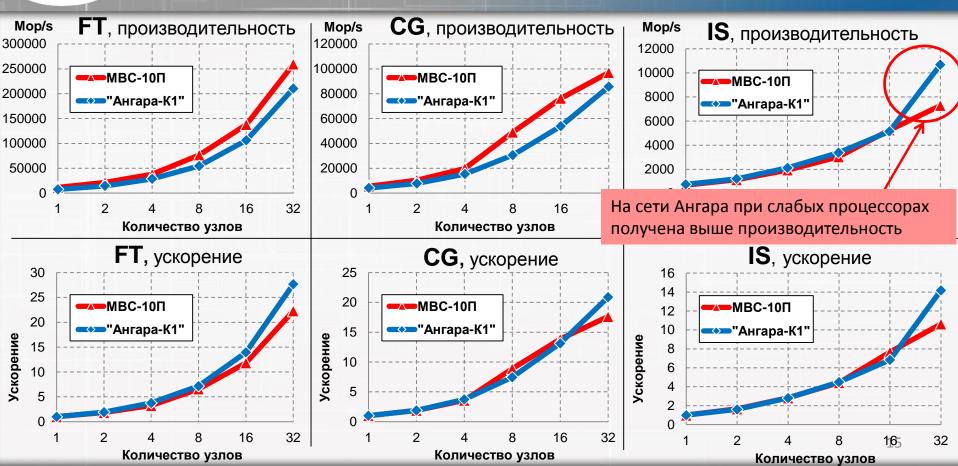
Размер сообщения, байт

ницвт Результаты тестов HPL и HPCG



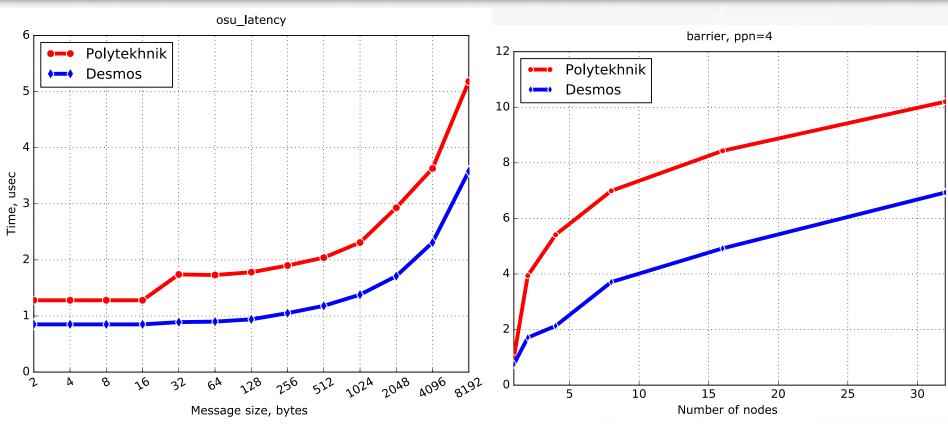
		Ангара	МВС-10П
HPL	Тфлопс % пиковой	4.44	_
	% пиковой	85 %	<u>—</u>
HPCG	Гфлопс	279	363
MPI	% пиковой	5.3 %	5.4 %
HPCG	Гфлопс	342	_
SHMEM	% пиковой	6.5 %	_

Результаты тестов NPB LU, MG (класс C)



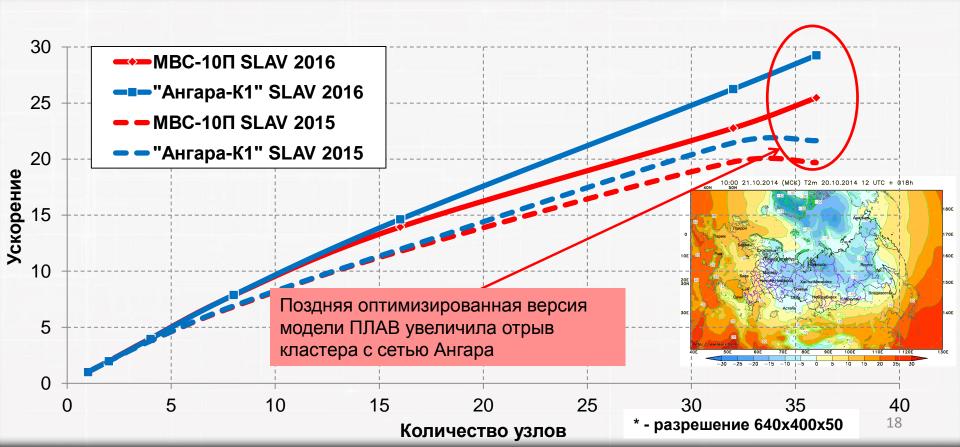
Результаты тестов NPB FT, CG, IS (класс C)

Desmos (ОИВТ РАН, Ниагара Компьютерс / НИЦЭВТ) vs Политехник (СПбПУ, РСК)


	Desmos	Политехник	
Узлы	1x Xeon E5-1650v3 6 ядер, 3.0 ГГц	2x Xeon E5-2697 v3 по 14 ядер, 2.6 ГГц	
Количество узлов	32	207 (36)	
Память узла	8 ГБ	64 ГБ	
Ускоритель	Nvidia GeForce GTX 1070		
Сеть	Ангара 4D-тор 4x2x2x2	Infiniband 4xFDR Fat Tree 2:1	
Компилятор	Intel Parallel Studio XE 2017	Intel Parallel Studio XE 2016	

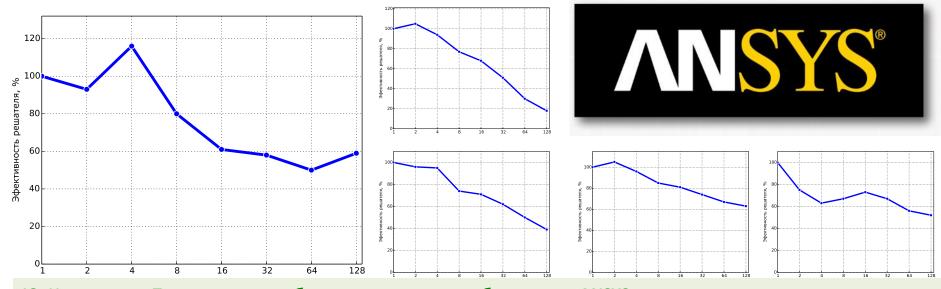
Desmos vs Политехник

- задержка на MPI между двумя узлами (osu_latency)
- VIAGARA Russian Supercomputers


- время выполнения MPI_Barrier

нишвт

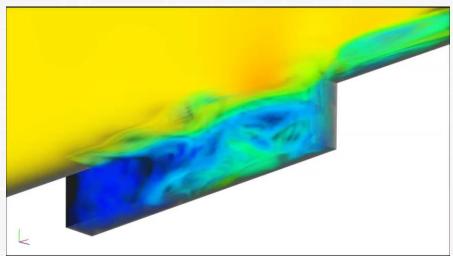
Коммуникационная сеть Ангара Модель прогноза погоды ПЛАВ*. д.ф,-м.н. М.А.Толстых, ИВМ РАН, Гидрометцентр

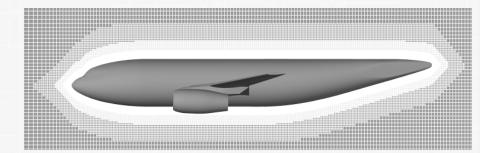


Инженерные пакеты

(1) ANSYS 18.2 Совместно КАДФЕМ Си-Ай-Эс

Ю. Новожилов. *Тестирование работы программного обеспечения ANSYS на кластерах с отечественным высокопроизводительным интерконнектом Ангара.* Международная конференция Суперкомпьютерные дни в России, 2017.


Ю. Новожилов. Работа решателей ANSYS на российском интерконнекте Ангара. XIV конференция пользователей CADFEM/ANSYS, 31 октября, 2017.


M219 Cavity case

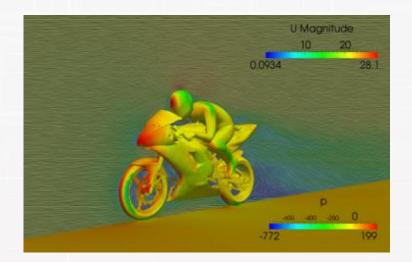
Обтекание каверны воздухом, 5.5 млн ячеек

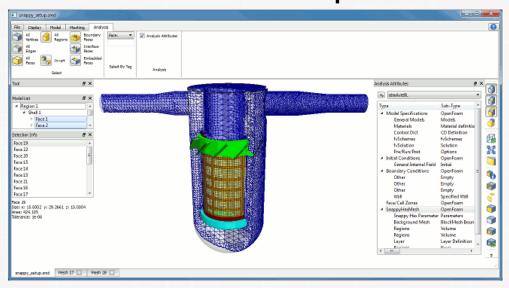
Объемная визуализация скорости

Неоднородная сетка Основная — 17.5 млн. ячеек, Приповерхностная — 9.3 млн. ячеек (всего — 26.8 млн. ячеек)

Задача Смеситель, 260 тыс. ячеек Распределение

температуры

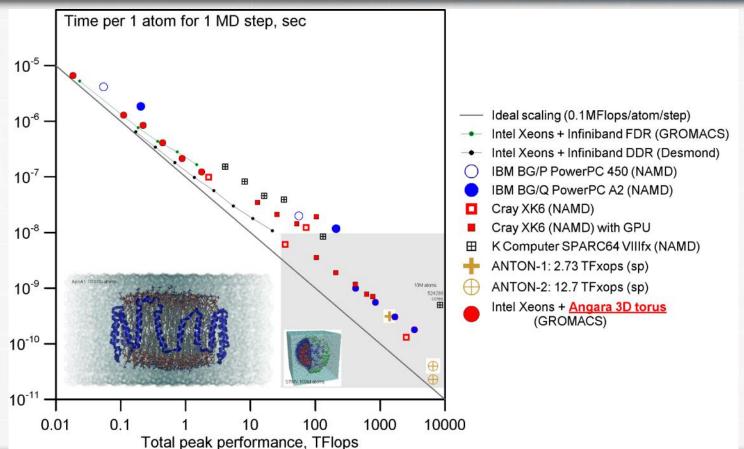

В. Акимов. *Исследование масштабируемости FlowVision на кластере с сетью Ангара. Ряд докладов на международных и российских конференциях.*



Open√FOAM

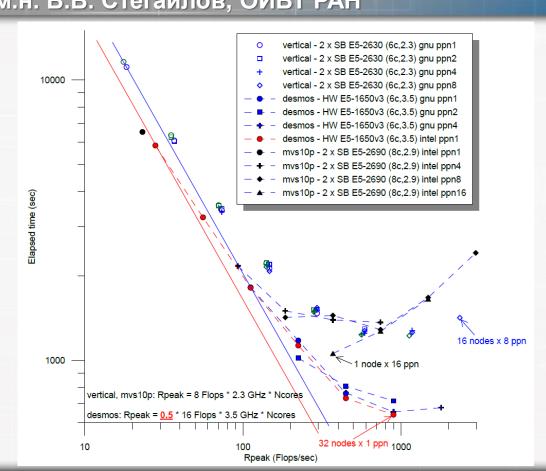
The Open Source CFD Toolbox

Версия 3.0.0



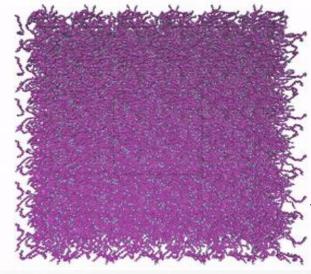
Приложения

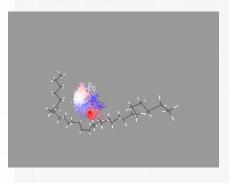
(1) Молекулярная динамика. Модель белка, GROMACS. д.ф.-м.н. В.В. Стегайлов, ОИВТ РАН



(2) Молекулярная динамика. Кристалл золота

НИЦ<mark>ВТ</mark> (4 атома в расчетной ячейке, k-сетка 21x21x21), VASP. д.ф.-м.н. В.В. Стегайлов, ОИВТ РАН





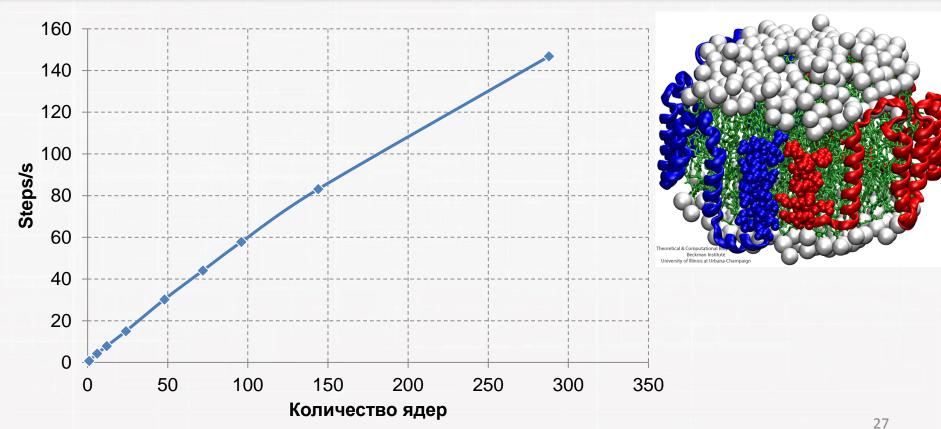
(3) Молекулярная динамика. Исследование свойств **НИЦІВТ** жидких углеводородов, LAMMPS. д.ф.-м.н. В.В. Стегайлов, ОИВТ РАН

Траектория 1-й молекулы в исследуемой жидкости

Диффузия, вязкость жидких углеводородов, т.к. они входят в состав

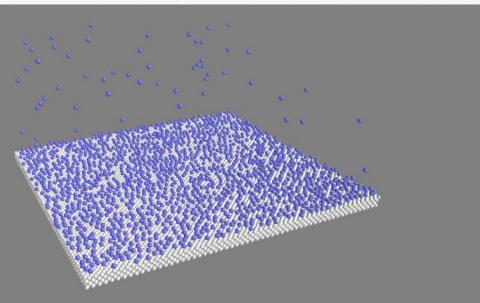
> трансформаторных масел, топлив и смазочных материалов

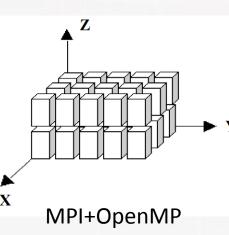
Молекулярная динамика-> макроскопические свойства


н-триаконтановая жидкость $T = 350 \div 490 \text{ K}$; P = 1 atmКоличество молекул ~ 4 000

LAMMPS, 30 July 2016

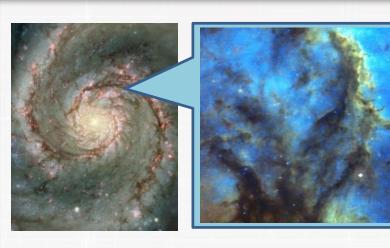
(4) Молекулярная динамика. ApoA1 benchmark, NAMD. PCK




(5) Моделирование термодинамического равновесия в системах газ-металл методами молекулярной динамики. д.ф.-м.н. С.В. Поляков, ИПМ РАН

Расчет по взаимодействию азота со стенками никелевого микроканала

Число частиц: 8 128 512 + 423 840 = 8 552 352, Температура термостатов: T_{Ni} = 273.15 K, T_{N2} = 273.15 K Число шагов по времени: 2 000 000 шагов, 1 шаг = 2 фс Размер системы: 102x102x1534 нм³



Фрагмент распределения молекул азота (область 20х20 нм) на поверхности никелевой пластины, в момент времени 2.3 нс

(6) Моделирование МГД турбулентности астрофизических тел, д.ф.-м.н. И.М. Куликов, ИВМиМГ СО РАН

The self-gravity magneto hydrodynamics equations

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \rho_{i} \\ \rho \vec{v} \\ \rho E \\ \rho \varepsilon \end{pmatrix} + \nabla \cdot \begin{pmatrix} \rho \vec{v} \\ \rho_{i} \vec{v} \\ \rho \vec{v} \vec{v} \\ \rho \vec{E} \vec{v} \\ \rho \varepsilon \vec{v} \end{pmatrix} = \begin{pmatrix} 0 \\ s_{i} \\ \nabla \cdot (\vec{B}\vec{B}) - \nabla p^{*} - \rho \nabla \Phi \\ -\nabla \cdot (p^{*}\vec{v} - \vec{B}(\vec{B}, \vec{v})) - (\rho \vec{v}, \nabla \Phi) - \Lambda + \Gamma \\ -(\gamma - 1)\rho \varepsilon \nabla \cdot \vec{v} - \Lambda + \Gamma \end{pmatrix}$$

$$\nabla \cdot B = 0$$

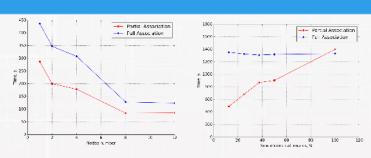
$$V \cdot B = 0$$

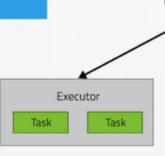
$$\frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{v} \times \vec{B}) \qquad \nabla \cdot \vec{B} = 0 \qquad \Delta \Phi = 4\pi G \rho$$

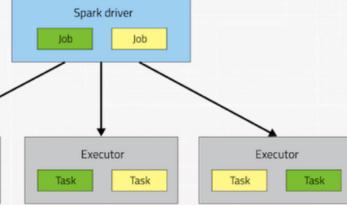
$$\rho E = \rho \varepsilon + \frac{\rho v^2}{2} + \frac{B^2}{2} \qquad p = (\gamma - 1) \rho \varepsilon \qquad p^* = p + \frac{B^2}{2}$$

Технологии на базе сети Ангара

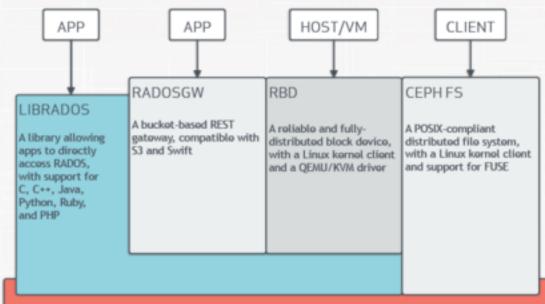
Apache Spark






Spark Streaming MLlib (machine learning) GraphX (graph)

Apache Spark



Программная система хранения данных Ceph

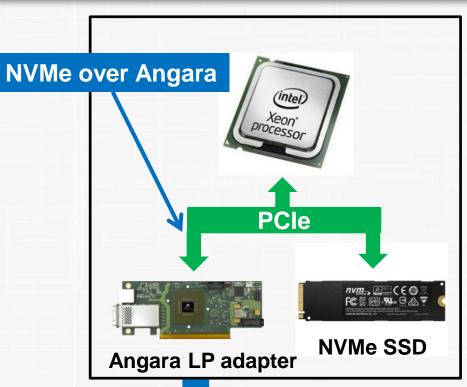
ceph

\$# rado	s bench	-p schenc	h 10 rand				
sec C	ur ops	started	finished	avg MB/s	cur MB/s	last lat(s)	avg lat(s)
0	0	0	0	0	0	-	0
1	16	258	242	967.695	968	0.142073	0.0610817
2	16	487	471	941.789	916	0.0234243	0.0647762
3	15	739	724	965.153	1012	0.145909	0.0643161
4	15	1049	1034	1033.83	1240	0.0233676	0.0603486
5	16	1361	1345	1075.84	1244	0.0055336	0.0579456
6	16	1714	1698	1131.84	1412	0.0299221	0.0556169
7	16	2065	2049	1170.7	1404	0.012719	0.0536391
8	16	2419	2403	1201.34	1416	0.0165833	0.0523875
9	16	2754	2738	1216.73	1340	0.0138274	0.0517339
10	15	3103	3088	1235.04	1400	0.0764744	0.0510114

Total time run: 10.090779 Total reads made: 3104 4194304 Read size: Object size: 4194304 Bandwidth (MB/sec): 1230.43 Average IOPS: 307 Stddev IOPS: 49 Max IOPS: 354 Min IOPS: 229 Average Latency(s): 0.0512704 Max latency(s): 0.22856

0.00462222

Min latency(s):


RADOS


A reliable, autonomous, distributed object store comprised of self-healing, self-managing, intelligent storage nodes

СХД: NVMe over Angara

Взаимодействие с научным сообществом

- Исследование производительности программных систем и библиотек на системах с сетью Ангара
- Отображение процессов на топологию с учетом маршрутизации сети Ангара
- Оптимизация коллективных операций для МРІ
- Разработка (или портирование) эффективной коммуникационной библиотеки, например, SHMEM, GASNet
- Разработка системы поддержки контрольных точек задачи

Результаты научной деятельности, связанные с сетью Ангара

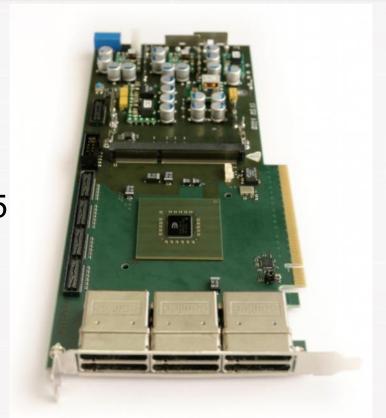
- 4 опубликованных статьи от 3х научных коллективов, в названии которых присутствует сеть Ангара, одна в трудах конференции Parallel Processing and Applied Mathematics, Польша
- 10 научных публикаций за 2016-2017 год
- 6 докладов на конференции Суперкомпьютерные дни в России 2017

- Практикум 2017 года для студентов
- Научная группа ВМК МГУ
- С.В. Поляков, ИПМ РАН
- TECИC, Flowvision
- А.В. Созыкин, ИММ УрО РАН

Сеть Ангара: поддержка и сервисы

 Настройка программного обеспечения на вычислительных системах, в том числе MPI

• Оперативная поддержка пользователей angara.nicevt.ru support@angara.nicevt.ru


 Профилирование и адаптация прикладного ПО

Контакты:

117587, Москва, Варшавское ш, 125 angara@nicevt.ru

