
Implementing computations with dynamic task
dependencies in the desktop grid environment using

Everest and Templet Web

I. Bobyleva1), S. Vostokin1), S. Popov1), O. Sukhoroslov2)

(1) Samara University, (2) IITP RAS

Presenter: S. Vostokin,
Prof., Information Systems and Technologies Dept.,

Samara National Research University
(Samara University)

GRID 2018, Dubna, September 10-14

PURPOSE OF THE STUDY

2

Provide a proof of technology solution (PoT) for desktop grid

applications with complex (dynamic) dependencies between tasks.

This kind of apps is in the demand in growing fields of science like Data

Science, Neuroinformatics, Bioinformatics, and mathematical modeling of

complex systems in general.

Features of Desktop grid Dedicated cluster

Low cost and availability + -

Easy to scale + -

Good for embarrassingly

parallel problems

+ +

Good for problems with

task dependencies

??? +

OBJECTIVES OF THE STUDY

3

I. Develop a prototype application that uses dynamic task dependency

graph (based on the block sorting algorithm).

II. Develop a scheme for deploying the application in the desktop grid

environment (running the Everest and Templet Web platforms).

III. Do the experimental study of the possibility of fault-free calculations

with a large number of interdependent tasks (for the proposed application

architecture and deployment scheme).

METHOD MIND MAP

4

Task

orchestration

part of the app

Task

scheduling

part of the app

Task execution

part of the app

Managed by Templet Web Managed by Everest platform

Exec. semantics:

Actor model

Code structure:

Microservices

Tooling:

Markup language

Features of the

programming

model

Everest REST API

Automatic

deployment using

Templet Web

Web UI Automatic

deployment using

Everest Web UI

PROTOTYPE APPLICATION REQUIREMENTS

5

• The app should make the use of idle computers

• The app should execute in a heterogeneous environment

• The app should have a simple and rapid deployment

• The app should provide long term fault-tolerant computing

• The app should manage a large number of interdependent

tasks

PROBLEM FOR THE PROTOTYPE APP: A BLOCK SORTING ALGORITHM

6

Why we choose this problem?

The problem statement is

simple for the sequential

computation.

The problem simulates

operations relevant to many

application domains:

• finding a correlation between

data items;

• finding a frequency of data

items;

• ordering of data items.

It is easy to vary the problem

complexity and the number of

tasks in experimental study.

for (int i = 0; i < N; i++)

block_sort(i);

for (int i = 1; i < N; i++)

for (int j = 0; j < I; j++)

block_merge(j, i);

Legend for the task dependencies graph:

– the i-th block sorting;

– the i-th and the j-th blocks merging

MICROSERVICE STRUCTURE OF THE PROTOTYPE APP

7

Microservices:

a – sorting; f – interaction with Everest platform;

c – merging; b, d, g – ancillary.

DEPLOYMENT OF THE PROTOTYPE APP

8

Task

orchestration

part of the app

Task

scheduling

part of the app

Task execution

part of the app

l

l l

l

Web terminal

Templet Web

server
VM on

https://sk.ssau.ru
Everest server

Desktop grid

HTTP

SSH REST API

Internal

API

deployed ondeployed on

deployed on

PROGRAMMING THE APP IN THE TEMPLET WEB IDE

9

The Templet language markup

Automatically generated code

Manually typed code

Controlling the generation of code

Templet preprocessor output

By pressing this

button you

deploy and

run the app

EVEREST IDE: REGISTERING THE sorter

10

EVEREST IDE: REGISTERING THE merger

11

EVEREST IDE: JOBS GENERATED BY THE ORCHESTRATOR PART OF THE APP

12

APPLICATION OUTPUT WINDOW

13

EXPERIMENTAL STUDY: NUMBER OF TASKS

14

Number of blocks Number of merge

tasks

Number of sort

tasks

Total tasks

2 1 2 3

4 6 4 10

8 28 8 36

16 120 16 136

32 496 32 528

64 2016 64 2080

128 8128 128 8256

EXPERIMENTAL STUDY: TIMES OF EXECUTION

15

Number of blocks Block size, KB Execution time, s

2 640 31,18

4 320 83,44

8 160 315,08

16 80 1019,85

32 40 3755,36

64 20 14580,80

128 10 54076,76

SUMMARY OF METHODS USED TO ACHIEVE THE APPLICATION REQUIREMENTS

16

• the use of idle computers → environment for task execution included notebooks,

desktop computers, and virtual machines

• execution in a heterogeneous environment → we used Linux for orchestration

part and Windows (Linux is also possible) for task execution part of the application

• simple and rapid deployment → was provided by the Everest and Templet Web UI

• long term fault-tolerant computing → the orchestration part used standalone

virtual machine and the task execution part was controlled by the Everest

• a large number of interdependent tasks → actor-based programming model

adapted for task management

CONCLUSION AND FUTURE DEVELOPMENT

17

A PoT solution for desktop grid applications with complex dependencies

between tasks was developed.

The perspective of using the actor-based programming model for task

orchestration together with advanced task management platform was

proved.

We plan to extend the Templet framework code for transparent

interaction with the Everest platform, making it easy to write applications.

THANK YOU

Feel free to contact:
Sergey.Vostokin@gmail.com

