
Scalable semantic virtual machine framework for
language-agnostic static analysis

Maxim Menshchikov

10th of September 2018

St.Petersburg State University



Author

Maxim Menshchikov —

• Postgraduate student at St. Petersburg State University,
faculty of Mathematics and Mechanics, department of
Software Engineering.

• Software engineer at OKTET Labs.

• Ex-security analyst.

Research interests:

• Methods of static analysis, development of static analyzers.

• Virtualization.

• Parallelization and distributed technologies.

• Networking.

1



Scope of the problem

State space is often subject to combinatorial explosion when the
size of the program goes beyond some boundary.

2



Towards the best approach

Our goal is to analyze programs in a distributed manner while
keeping algorithms detached from distributed technologies.

3



Plan of a talk

4



File system

We use a hybrid approach in which only selected files are
transferred to nodes, while the rest (e.g. headers) reside on a
distributed storage.

5



File distribution

We use a simple suboptimal algorithm:

1. Calculate total input file size: S =
∑

si . Let’s consider m
to be a number of files.

2. Divide it by the number of nodes (N): Sn = S
N

3. For each node 1 ≤ i ≤ N initialize ri = Sn (the remainder)
4. Loop until all files are scheduled:

4.1 Loop by nodes (i):
4.1.1 Terminate loop if all files are scheduled.
4.1.2 Take the biggest file sj (j ∈ [0,m]) of size satisfying the

following requirement:
sj ≤ ri

4.1.3 If such file doesn’t exist, take the smallest file satisfying
this requirement:

sj > ri

4.1.4 ri := ri − sj

6



Language-agnostic processing

To perform language-agnostic processing we use our own
intermediate representation language. Programs in this IR are
generated by C → generalized syntax → IR translator.

Alternative: LLVM IR.

7



Semantic storage behind the IR

The IR is not a standalone language. All semantic objects are
serializable and have ID, properties and tags. Immutable objects
are used to mimic low-level behavior.

8



VM IR operational codes

Following operational codes are commonly used in IR
throughout the analyzer:

9



Hypervisor and virtual machines

Operational codes are executed on Semantic Virtual Machines,
supervised by Semantic Hypervisor. Virtual Machines alone do
intraprocedural analysis, while Hypervisor can schedule
interprocedural tasks on a specific node.

10



Object lookup algorithm

1. Local lookup:
1.1 Search for a target resource among local resources.
1.2 Search for a target const reference and const value among

local objects.

2. Global lookup:
Search for a target resource among global resources and
load it if found using hypervisor’s relay.

3. Horizontal lookup:
Search for a target resource among resources of other nodes.

4. Preliminary creation:
Create a global resource with non-existent mark of a
deduced type.
(missing information would be filled later).

11



Main principles

1. MapReduce pattern.
MapReduce-like pattern is used for the analysis whenever
applicable.

12



Main principles (2)

2. Lazy semantics loading.
Semantics is always stored in a database and can be loaded
on demand.

3. Automatic data unloading.
Unused data is deallocated as soon as possible.

13



Main principles (3)

4. Code simplification.
Remove: unused variables, branches and loops with
conditions that are always false, complex syntax constructs.

5. Keeping data as local as possible, eliminating transfer
overhead.

14



Obstacles

• Distributed source location keeping isn’t trivial.

• Looping immutable objects requires a variable refresh.

15



Obstacles

• Unstructured sources can heavily impact the performance.

16



Test results

We tested the approach on various inputs of our Verification
Example Framework1. Intraprocedural and interprocedural
model checking had been started2. Similar results have been
achieved with Linux kernel.

Approach Performance (%) Precision (%)
Semantic VM 100 100
Distributed Semantic VM (4 nodes) 369 100
Distributed Semantic VM (8 nodes) 720 100
VM with assembler-like input 114 63
Generic semantics-driven analysis 176 80

1Potentially will be open in the future.
2Precision is derived from a number of correct checking tries

17



Novelty

• Unlike LLVM IR and so — our language is built specifically
for static analysis and its programs are easily translatable
to constraint systems.

• Almost linear scaling is achieved for some kinds of analysis.

• Flexibility of the approach is greater since virtual machine
implementation can know a little about distribution.

18



Conclusion

• A special virtual machine IR for static analysis had been
developed.
• An algorithm for file distribution had been battle-tested

and had shown to be "good enough".
• Algorithms for distributed object lookup and other

operations had been prepared.
• Hypervisor/Semantic virtual machine framework had been

designed and implemented as a part of our analyzer,
showing almost linear scaling in some kinds of analysis.

Still need to:

• Further evaluate the architecture on various projects.
• Prepare a production-ready solution after the analyzer is

done (Now it is only a Proof of Concept).
19



Questions?
Other publications about the project:

• Menshchikov M.A. Hybrid system of static analysis with
proof-based verification of invariants. Master’s thesis.

• Menshchikov M., Lepikhin T. 5W+1H Static Analysis Report
Quality Measure. TMPA-2017.

• Menshchikov M.A., Lepikhin T.A. Applying MapReduce to
static analysis. CPS-2017.

• Menshchikov M.A. Race condition detection in C code using
static analysis. Bachelor’s thesis.

• Menshchikov M.A., Lepikhin T.A. Function context detection in
the program source code. CPS-2016.

20



Tech

Main technologies and projects used around the analyzer:

21


