
Botnet in PyPy to speed up the work 
of the Earley parser

Dubna, 13 september 2018

Radishesvkii Vladislav
Kulnevich Aleksei



Introduction

2

Natural Language Processing

is an area of computer science and artificial intelligence concerned with the interactions between 
computers and human (natural) languages, in particular how to program computers to process and 
analyze large amounts of natural language data.

Aim: To build intelligent computers that can interact with human being like a human being

Why NLP?
 Huge amount of data

Internet = 1.9 billions websites, 7.6 billion users (https://www.internetworldstats.com/)

Text data – web sites, blogs, tweets, social networks, ...
Audio data – speech, ...

Applications for processing large amounts of texts require NLP expertise

https://www.internetworldstats.com/


Introduction

3

Natural Language Processing

Use cases:

 Politics
 Sentimental analysis (brand & feedback analysis)
 Cognitive search (on the semantic content)
 Question-answer systems (chatbots)
 Speech recognition & generation
 Machine translation
 . . .



Objectives of work

4

Collect text data

Receiving text data from documents of various formats
Search for websites with the right information and extract text from them

Extract entities & key-values

Speed up the information retrieval process

Retrieve indications to named entities and domain attributes

Use multiprocessing and distributed computing



Data collection scheme

5

Collect text data

Generate 
queries

Get search 
results

Open page or 
download file

Extract text
& save



Distributed page parsing

6

Collect text data

 
Voyager 
(Selenuim) 

Async link queue 
(Flask, Redis) 

Parser bot #1 
(Selenium) 

PUT requests 

GET requests 

Parser bot #2 
(Selenium) 

Parser bot #3 
(Selenium) . . . 

GET GET 
GET 



Extract entities & key-values

7

Earley parser is an algorithm for parsing strings that belong to a given context-free 
language.

The Earley parser executes in cubic time in the general case O(n3), where n is the length of 
the parsed string.

It was first introduced by Jay Earley in 1968



Extract entities & key-values

8

Earley parser (implementation) - Yargy

https://github.com/natasha/yargy



9

Extract entities & key-values

Grammar – date extraction example



10

Extract entities & key-values

Grammar - constructions

 Tokenization is the process of demarcating and possibly classifying sections of a string 
of input characters

 POS tagging - define the part of the speech of a word, its genus, number, case

 Predicates –base constructions for writing grammars (and, or, caseless, eq etc.)

 Relation - gender_relation, number_relation, case_relation, gnc_relation

 Gazetteer is a dictionary. In it, you can define a set of words suitable for a description, 
and use them in grammar 



11

Speed up the information retrieval process

Multiprocessing & distributed computing

 Multiprocessing

processing speed is very slow ~ 1500 bytes / sec

 Distributed computing

The calculations involved 8 computers with 4 threads each (x32)

Task Master

Bot Bot Bot …

task

result



12

Speed up the information retrieval process

Python -> PyPy

For our grammars, he accelerated the processing speed of the 
text by an average of 4 times, but the consumption of RAM 
increased by ~ 25%

PyPy is a fast, compliant alternative 
implementation of the Python language



13

Conclusion

The use of distributed computations together with the replacement of the standard 
Python interpreter with PyPy allowed to increase the speed of the extraction of facts 
increased ~ 4 times using Earley parser on context-free grammars. Multiprocessing & 
distributed computing (8 computers & 4 threads) allowed to speed up also in 32 times.



Thank you for attention!


	Botnet in PyPy to speed up the work �of the Earley parser
	Introduction
	Introduction
	Objectives of work
	Слайд номер 5
	Слайд номер 6
	Extract entities & key-values
	Extract entities & key-values
	Слайд номер 9
	Слайд номер 10
	Слайд номер 11
	Слайд номер 12
	Слайд номер 13
	Thank you for attention!

