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Outline of the talk

The talk is based on the paper Z.K. Silagadze, Evading Quantum
Mechanics à la Sudarshan: quantum-mechanics-free subsystem as a
realization of Koopman-von Neumann mechanics,
https://arxiv.org/abs/2308.08919. Published in Foundations of
Physics 53 (2023), 92.

Koopmann-von Neumann mechanics
Quantum-mechanics-free subsystems
Concluding remarks: KvN mechanics is realized in QMFS
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Koopman-von Neumann mechanics

Through the Liouville equation
Through the correspondence principle/Ehrenfest’s theorem
Via Wigner function
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Through the Liouville equation

∂ρ(q, p, t)

∂t
=
∂Hcl

∂q

∂ρ

∂p
− ∂Hcl

∂p

∂ρ

∂q
.

The classical wave function ψ(q, p, t) =
√
ρ(q, p, t) obeys the same

Liouville equation, which can be rewritten in Schrödinger-type form

i
∂ψ(q, p, t)

∂t
= L̂ψ, L̂ = i

(
∂Hcl

∂q

∂

∂p
− ∂Hcl

∂p

∂

∂q

)
.

It is possible to develop a formulation of classical mechanics in Hilbert
space that completely resembles the quantum formalism, except that,
of course, all interference effects are absent. Koopman 1931, von
Neumann 1932.

D. Mauro, Topics in Koopman-von Neumann Theory,
https://doi.org/10.48550/arXiv.quant-ph/0301172

Zurab K. Silagadze Evading Quantum Mechanics 4 / 14

https://doi.org/10.48550/arXiv.quant-ph/0301172


Through the correspondence principle/Ehrenfest’s theorem

Ordinary axioms of quantum mechanics.
|Ψ(t)⟩ = Û(t)|Ψ(0)⟩: unitary representation of a group of time shifts.
According to Stone’s theorem, there must exist a Hermitian generating
operator with i d |Ψ⟩

dt = L̂|Ψ⟩.
Ehrenfest’s theorem d

dt ⟨q̂⟩ = ⟨ p̂
m ⟩, d

dt ⟨p̂⟩ = −⟨ d
dqU(q̂)⟩ requires

i [L̂, q̂] =
p̂

m
, i [L̂, p̂] = − d

dq
U(q̂).

[q̂, p̂] = iℏ -> quantum mechanics: ℏL̂ = Ĥ = p̂2

2m + U(q̂).

[q̂, p̂] = 0 -> we cannot construct L̂ from only dynamic variables q̂, p̂.
To correct the situation, we introduce two additional Hermitian
operators λ̂q, λ̂p, satisfying the conditions [q̂, λ̂q] = i , [p̂, λ̂p] = i .
Then L̂ = p̂

m λ̂x −
dU(q̂)
dq λ̂p.

F. Wilczek, Notes on Koopman von Neumann Mechanics, and a Step
Beyond. https://frankwilczek.com/2015/koopmanVonNeumann02.pdf
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Via Wigner function

W (q, p) =
1√
2πℏ

∫
e

i
ℏpyΨ∗(q + y/2, t)Ψ(q − y/2, t)dy .

ℏ → kℏ, y = kℏλp, u = q − kℏλp

2 , v = q +
kℏλp

2 :

W (q, p) =

√
kℏ
2π

∫
e ipλpρ(u, v , t)dλp, ; ρ(u, v , t) = Ψ∗(v)Ψ(u).

ikℏ
∂ρ

∂t
=
[
Ĥu − Ĥv

]
ρ, Ĥu =

(kℏ)2

2m
∂2

∂u2 + U(u).

This is reminiscent of the chiral decomposition method.
Generalized pseudo-differential Bopp operators:

û = q̂ − kℏλ̂p
2

, v̂ = q̂ +
kℏλ̂p

2
, p̂u = p̂ +

kℏλ̂q
2

, p̂v = p̂ − kℏλ̂q
2

.

[û, p̂u] = ikℏ, [v̂ , p̂v ] = −ikℏ k → 0 means [q̂, p̂] = 0.
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Chiral decomposition method

The difference of Hamiltonians of two uncoupled one-dimensinal oscillators
yield an interesting non-commutative system in the plane:
P. D. Alvarez, J. Gomis, K. Kamimura, M. S. Plyushchay, Anisotropic
harmonic oscillator, non-commutative Landau problem and exotic
Newton-Hooke symmetry, Phys. Lett. B 659, 906-912 (2008).
https://arxiv.org/abs/0711.2644

P. D. Alvarez, J. Gomis, K. Kamimura, and M. S. Plyushchay, (2+1)D
Exotic Newton-Hooke Symmetry, Duality and Projective Phase, Annals
Phys. 322 (2007) 1556-1586.
https://arxiv.org/abs/hep-th/0702014

P.-M. Zhang, P. A. Horvathy, Chiral Decomposition in the
Non-Commutative Landau Problem, Annals Phys. 327 (2012) 1730–1743.
https://arxiv.org/abs/1112.0409.
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k → 0 limit and Koopman-von Neumann equation

Ĥu − Ĥv =
kp̂P̂

m
+ U

(
q̂ +

kQ̂

2

)
− U

(
q̂ − kQ̂

2

)
, λ̂q =

P̂

ℏ
, λ̂p = −Q̂

ℏ
.

iℏ
∂ΨKvN

∂t
=

[
p̂P̂

m
+

1
k
U

(
q̂ +

kQ̂

2

)
− 1

k
U

(
q̂ − kQ̂

2

)]
ΨKvN ,

where
ΨKvN(q,Q, t) ∼ ρ(u, v , t).

We have a well defined k → 0 limit:

iℏ
∂ΨKvN

∂t
=

[
p̂P̂

m
+
∂U(q)

∂q
Q

]
ΨKvN = ĤKvNΨKvN .

D.I. Bondar et al., Operational dynamic modeling transcending quantum
and classical mechanics, Phys. Rev. Lett. 109 (2012) 190403.
https://arxiv.org/abs/1105.4014
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Comparison of ℏ → 0 and k → 0 limits
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Sudarshan’s interpretation

If we introduce Q̂ and P̂ operators as follows

Q̂ = iℏ
∂

∂p
, P̂ = −iℏ

∂

∂q
,

then the Liouville-Schrödinger equation takes the form

iℏ
∂ψ(q, p, t)

∂t
= Ĥψ, Ĥ =

∂Hcl

∂q
Q̂ +

∂Hcl

∂p
P̂,

and it can be interpreted as the Schrödinger equation in the
(q, p)-representation (with diagonal operators q and p) of a genuine
quantum system with two pairs of canonical variables (q,P) and (Q, p).

E. C. G. Sudarshan, Interaction between classical and quantum systems
and the measurement of quantum observables, Pramana 6(3) (1976), 117.
https://link.springer.com/article/10.1007/BF02847120
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Quantum Mechanics Free Subsystems (QMFS)
Let us assume that the Hamiltonian of the quantum system is equal to

Ĥ = f (q, p, t)P̂ + g(q, p, t)Q̂ + h(q, p, t),

where f (q, p, t), g(q, p, t), h(q, p, t) are arbitrary functions, and q,P and
Q, p represent are two pairs of quantum mechanical conjugate variables
that obey canonical commutation relations. Then the Heisenberg equations
of motion for the commuting variables q, p

dq

dt
=
∂H

∂P
= f (q, p, t),

dp

dt
= −∂H

∂Q
= −g(q, p, t),

do not contain “hidden" variables Q̂, P̂ and will correspond to classical
Hamiltonian dynamics if there exists a classical Hamiltonian function
Hcl(q, p, t) such that

f (q, p, t) =
∂Hcl

∂p
, g(q, p, t) =

∂Hcl

∂q
.
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Experimental implementation of QMFS

M. Tsang, C. M. Caves, Evading quantum mechanics: Engineering a
classical subsystem within a quantum environment, Phys. Rev. X 2 (2012),
031016. https://arxiv.org/abs/1203.2317 A pair of positive and
negative mass oscillators can be used for this purpose. The quantum
Hamiltonian in this case has the form

H =
p2
1

2m
+

1
2
mω2q2

1 − p2
2

2m
− 1

2
mω2q2

2 .

In terms of new canonical variables

q = q1 + q2, Q =
1
2
(q1 − q2), p = p1 − p2, P =

1
2
(p1 + p2),

The Hamiltonian takes the form H = pP
m +mω2qQ, and is a KvN-type

Hamiltonian.
Sidney Coleman: “The career of a young theoretical physicist consists of
treating the harmonic oscillator in ever-increasing levels of abstraction."
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KvN mechanics is realized in QMFS

Similarity of the Sudarshan interpretation of the KvN mechanics with
the idea of QMFS is obvious.
(q, p) subsystem of KvN mechanics is nothing more than QMFS.
Resumption of interest in KvN mechanics was caused by the need to
create suitable formalism for hybrid classical-quantum systems.
The identification of quantum-mechanics-free subsystems with
Sudarshan’s interpretation of KvN mechanics, combined with the fact
that such systems were actually implemented experimentally, makes
the KvN mechanics, in a sense, engineering science.
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Quantum gravity destroys classicality?

Modification of quantum mechanics, expected from quantum gravity,
can lead to deformation of classical mechanics (O.I Chashchina, A.
Sen, Z.K. Silagadze, On deformations of classical mechanics due to
Planck-scale physics, Int. J. Mod. Phys. D29 (2020), 2050070
https://arxiv.org/abs/1902.09728).
This deformation actually destroys the classicality if Sudarshan’s views
on KvN mechanics are taken seriously.
You are not required to accept the Sudarshan interpretation in order
to develop the KvN mechanics.
However, we now see that the existence of quantum-mechanics-free
subsystems indicates that we should take Sudarshan’s interpretation of
KvN mechanics seriously.
Therefore, we expect that, due to the universal nature of gravity, if the
effects of quantum gravity do modify quantum mechanics, these
effects will destroy the classical dynamics in QMFS.

Zurab K. Silagadze Evading Quantum Mechanics 14 / 14

https://arxiv.org/abs/1902.09728

