ITMO UNIVERSITY

Saint Petersburg, Russia

Симуляторы квантовоподобных вычислений на основе распределенных физических систем

Алоджанц Александр

Поддержан грантом РНФ № 23-22-00058

Plan of the talk

Al-generated image of a quantum robotic Schrödinger's cat that reads quantum machine learning review paper.

A. Melnikov, M. Kordzanganeh, A. Alodjants & Ray-Kuang Lee, Quantum machine learning: from physics to software engineering, Advances in Physics: X, 8:1 (2023)

- Quantum inspired algorithms /simulators for NP-hard problem solution;
- Photonic transport in 2D structures enhanced by complex networks;
- Random walks on graphs and quantum speedup problem.

Give answer on:

How we can minimize computational overheads and improve speedup?

ITMO UNIVERSITY

Vital Problem at NISQ Era

ITMO UNIVERSITY

John Preskill

We need Quantum, or, Quantum-like (quantum inspired, cognitive, Fussy, etc.) computation?

NISQ - Noisy Intermediate-Scale Quantum technology

John Preskill, Quantum 2, 79 (2018)

Quantum & Quantum Inspired Hardware

ITMO UNIVERSITY

	Definition	Туре	Qubits	Players
Quantum inspired emulators and simulators	they are classical computers, simulating quantum algorithms. They are slower than quantum computers.	Ising machines used for optimisation	none	TOSHIBA FUJITSU HITACHI Inspire the Next
Quantum annealer	they use "average quality" qubits and only part of quantum algorithms are processed.	Ising machines used for optimisation	Superconductors	
NISQ « Noisy Intermediate-Scale Quantum »	50-100 qubits – more performing than HPC but still limited	Quantum processor – can solve any problem	Superconductors	Figetti_{Raytheon}
Universal quantum computer	> 100 qubits	Quantum processor – can solve any problem	Superconductors Photons Spin qubits Quasi particles NV centers Trapped ions Cold atoms	Microsoft 〇〇阿里云 Honeywell

Workflow for solving Quadratic Unconstrained Binary Optimization problems

Quantum annealing vs Classical annealing

D-Wave 2000Q annealing

QUBO

Ising Formulation

Minor Embedding

The Hamiltonian of the Ising model in a transverse field

$$\mathscr{H}(t) = \sum_{i \in \mathsf{V}(G)} h_i(t)\sigma_i^z + \sum_{ij \in \mathsf{E}(G)} J_{ij}(t)\sigma_i^z\sigma_j^z + \sum_{i \in \mathsf{V}(G)} \Delta_i(t)\sigma_i^x$$
Annealing Final Hamiltonian Transverse field Solution

Vicky Choi, Quantum Inf. Process (2008)

Minor Embedding as Computational Overhead

ME allows to map abstract (Ising) graph to physical lattice device Embedding introduces considerable overhead relative to the fully connected model: for N logical qubits, $\sim N^2$ physical qubits are required

QUBO-solvers

Some Network Models

Any network node *i* characterized by node degree k_i that determines number of links coupled for this node.

Statistical properties of any network may be characterized by its node degree distribution function p_k .

 p_k is probability that node has exactly k links, k = 0, 1, 2, ...

Statistical properties determined by

> Average node degree $\langle k \rangle$,

> Normalized node degrees correlation function $\zeta = \frac{1}{10}$

> is robust against links removing;

ITMO UNIVERSITY

represents strongly interacting (disordered) system in Nature.

Simulator Model with Light-Qubit Coupling in 2D Microstructures

V. DeGiorgio and Marlan O. Scully, Analogy between the Laser Threshold Region and a Second-Order Phase Transition Phys. Rev. A 2, 1170 (1970)

Basic Approach

Maxwell-Bloch Equation

$$\dot{\alpha} = (-i\omega_{ph} - \kappa)\alpha - ig\sum_{j=1}^{N} p_j + P$$

$$\dot{p}_j = (-i\omega_{0,j} - \Gamma_j)p_j + igk_j\alpha\sigma_j^z$$

$$\dot{\sigma_j^z} = \frac{1}{\tau_j}(\sigma_{j,0}^z - \sigma_j^z) + 2igk_j(p_j\alpha^* - p_j^*\alpha)$$

 τ_i – spontaneous emission time;

ITMO UNIVERSITY

- Γ_i dephasing rate;
- κ photon losing rate;

 $p_j = \langle a_j^{\dagger} b_j \rangle$ - average polarization

 $\alpha(t) = \langle a_v \rangle$ is average photonic field

 $\sigma_j^z = \langle b_j^{\dagger} b_j - a_j^{\dagger} a_j \rangle$ - average inversion

Photon-field (transport) diffusion

$$\dot{E} = -\left(\kappa - \sum_{j=1}^{N} \frac{(g^2 k_j \sigma_{j,0}^z (\Gamma_j - i\Delta_j)}{\Delta_j^2 + \Gamma_j^2}\right) E - \sum_{j=1}^{N} \frac{4g^4 k_j^3 \tau_j \Gamma_j (\Gamma_j - i\Delta_j) \sigma_{j,0}^z}{(\Delta_j^2 + \Gamma_j^2)^2} |E|^2 E + P,$$
H. Haken, Light: Laser light dynamics, 1981

Non-Equilibrium Phase Transition

ITMO UNIVERSITY

The rate of photon transport enhanced $\langle \mathbf{k} \rangle$ times Rabi splitting scales as $g \sqrt{N\langle k \rangle}$

= 1.5

Diffusion

Basic equation n_{pl}

$$_{ph}\equiv\left|\Psi
ight|^{2}$$

$$\dot{n}_{ph} = 2An_{ph} - 2Bn_{ph}^2 + 2\gamma\sqrt{n_{ph}},$$

$$A = \frac{\kappa}{2} (C_{\Gamma} D_0 - 1), \qquad B = \frac{C_{\Gamma}^2 \kappa^2 D_0}{(\gamma_P + \gamma_D)},$$

r=0 $n_{ph} = \frac{Ave^{2At}}{1+Bve^{2At}}$

$$u = ar{n}/(A - Bar{n}); ar{n}$$
 - начальное значение

r ≠0

$$n_{ph} = \frac{(e^{At}(A\sqrt{\bar{n}}+\gamma)-\gamma)^2}{A^2}$$

*r*_c = A²*n* критическое значение контролирующего поля, при котором наступает усиление

Outline

Processes Simulators. Entropy 2023, 25, 1601.

In NISQ era quantum inspired (heuristic) algorithms realized by means of photon involved simulators may be more successful for solving some of NP-hard problems for moderate (up to hundred of thousands) number of qubits.

We can minimize computational overheads and improve speedup by means of direct arrangement of hardware circuits for a given NP-hard problem.

The rate of photonic transport may be enhanced in complex networks $\langle k \rangle \gg 1$ times. Such a regime occurs due to simultaneous interaction of two-level systems with a quantized field through numerous waveguide channels (graph edges) responsible for the hubs formation.

A. Bazhenov, M. M. Nikitina, D. V. Tsarev, and A. P. Alodjants, *Random Laser Based on Materials in the Form of Complex Network Structures* JETP Letters, Vol. 117, No. 11, pp. 814–820 (2023)
A. Melnikov, M. Kordzanganeh, Alexander Alodjants & Ray-Kuang Lee, *Quantum machine learning: from physics to software engineering*, Advances in Physics: X, 8:1 (2023)
Alodjants, A.; Zacharenko, P.; Tsarev, D.; Avdyushina, A.; Nikitina, M.; Khrennikov, A.; Boukhanovsky, A. Random Lasers as Social

A. Alodjants, A. Bazhenov, A. Khrennikov, A.V. Bukhanovsky, Mean-field theory of social laser Scientific Reports, 12. 1-17 (2022)

ITMO UNIVERSITY

Thank you for your attention!

Alexander_ap@list.ru

Small world phenomenon

Distance between two randomly chosen nodes in a network is short - six degrees of separation effect

ITMO UNIVERSITY

<k> nodes at distance one (d=1). <k>² nodes at distance two (d=2). <k>³ nodes at distance three (d=3).

 $< k >^{d}$ nodes at distance d.

•••

Random vs Levy Walks

Information spreading in complex structures

ITMO UNIVERSITY

For simulation of QUBO (or some other) NP-hard computational problem we need to use some mapping procedure to the graph

- > Can we avoid minor embedding (or, some similar) procedure?
- > How we can use graph topology for speedup information processing?

We should use complex network advantages !

Bullmore, E., Sporns, O. Nat Rev. Neurosci 10, 186 (2009)