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o L Schrodinger's cat that reads quantum
' machine learning review paper.

A. Melnikov, M. Kordzanganeh, A. Alodjants & Ray-Kuang
Lee, Quantum machine learning: from physics to software
engineering, Advances in Physics: X, 8:1 (2023)

> Quantum inspired algorithms /simulators for NP-hard problem |
solution; Give answer on:

. . How we can minimize
» Photonic transport in 2D structures enhanced by complex - .
computational
networks;

overheads and improve
» Random walks on graphs and quantum speedup problem. speedup?
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Vital Problem at NISQ Era
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NISQ era:

We need Quantum, or, Quantum-like
(quantum inspired, cognitive, Fussy, etc.) computation?

NISQ - Noisy Intermediate-Scale Quantum technology
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John Preskill

John Preskill, Quantum 2, 79 (2018)



Quantum & Quantum Inspired Hardware
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Definition Type Qubits Players
they are classical TOSHIBA
I - . O
Quantum inspired computers, sam_u!atmg Ising machines used for FUIITSU
emulators and quantum algorithms. They obtimisation none
simulators are slower than quantum P ,EJI&?,!,‘!,! @ NTT

computers. B \jicrosoft
they use “average
quality” qubits and only - :

Quantum annealer part of quantum ::'rligmni:i?;?‘es used for Superconductors D:\Waul
algorithms are P [ S———
processed.

NISQ « Noisy 50-100 qubits — more Quantum processor — BE T=%== G |
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Quantum » but still limited can solve any probiem '-IgEt ' Raytheon

Superconductors _
Phlz)tons B® Microsoft (-JFIEZ
Spin qubits Honeywell
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Workflow for solving Quadratic Unconstrained Binary Optimization problems

Quantum annealing vs Classical annealing D-Wave 2000Q annealing
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| Minor Embedding ||

The Hamiltonian of the Ising model in a transverse field

A= > hio] + > Jij(ho;o; + > A

ieV(G) ijeE(G) ieV(G) ANeRtE )

\ ’ J \ ' ,
Final Hamiltonian Transverse field | Sofor ‘

Vicky Choi, Quantum Inf . Process (2008) —.




Minor Embedding as Computational Overhead |
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Logical qubit Hardware graph

Software graph Processor graph processor

»
-

ME allows to map abstract (Ising) graph to physical lattice device

Embedding introduces considerable overhead relative to the fully connected model:
for N logical qubits, ~N? physical qubits are required



QUBO-solvers
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Spin chip (CMOS) , Hitachi ASIC Digital MW, Fujitsu FPGA Bifurcation machine, BM, Toshiba

e EE"'?’ tsala
] 'Dt"j o] H

2%20,000 spins 8192 spins 4096 spins

Coherent Ising Machine, (CIM) MAX CUT Ha nonHo-csA3HOM rpade n3 2000 cnuHoB

x10¢0 FPGA-BM
a-

SA (simulated annealing) , CPU (Intel
Core i9-9900K, 3.60 GHz with 64-gigabyte
RAM

FPGA pecypcbi no3sonsatoT pabortatb
€ MmaTpuuamm O(Nz)

Ising Energy

Goemans-Williamson semi-definite
programming (GW-SDP)  0(N3)

100 000 spins ) et SO
A 106 10 10+ 10 10?2 10
Mohseni, N., et al, Time. sec

Nat Rev Phys 4, 363 (2022)



Some Network Models
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Any network node i characterized by node degree k; that determines number of links coupled for this node.
Statistical properties of any network may be characterized by its node degree distribution function py,.

P is probability that node has exactly k links, k=0, 1, 2, ...

Regular graph Erd6s—Rényi graph Scale-free graph vs SG!  Node degree distribution p,,

p(k) = 6(k — ko)

Statistical properties determined by
» is robust against links removing;

> Average node degree (k),
g & (e (kz) > represents strongly interacting

> Normalized node degrees correlation function ¢ 00 (disordered) system in Nature.



Simulator Model with Light-Qubit Coupling in 2D Microstructures
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Qubits Photons Photon-qubit interaction Injection field

! \ Wo; - qubit frequency

transition
Z o ;0; + (‘)thZ Z aja, + z Z(ava +ajo;) + hP(aj — a,) af(a,) - photonic creation

i=1v=1 : 1v= (annihilation) operator for v
mode with frequency wpp

2D structures with network interface  p(k) « I

b) c)

y=15 y=2.5 y=>5

V. DeGiorgio and Marlan O. Scully, Analogy between the Laser Threshold Region and a Second-Order Phase Transition
Phys. Rev. A 2, 1170 (1970)



Basic Approach

Maxwell-Bloch Equation

a= (—lwph—K)a—ngp] + P

( lwo,j — )p] + lgk aa
7 = ( 7 — o 7) + 2igk; (p] pj*a) Kk — photon losing rate;

[} — dephasing rate;

p; = (a;rbj) - average polarization a(t) = (a,) is average photonic field
of = (ijrbj — a]Taj) - average inversion

Photon-field (transport) diffusion

T; — spontaneous emission time;
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N 2 : N 41.3 :
P Z (g kjﬂfﬂ(rj — iAj) E_ Z 4g kj 7 ( — !&j)ﬂ'j‘?ﬂ |E|2E 4P
: A? +T? , (A2 4+ T%)2 ’
j=1 J J j=1 J J H. Haken, Light: Laser light

dynamics, 1981



Non-Equilibrium Phase Transition |
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Approximation pj(t) =0; g7 (t) =0 104; - - —
1 —<k>
Fj > K,T_j, A] 10 \
Order parameter is field amplitude Threshold to lasing for a‘fm |
normalized population imbalance *~
(¢ |
a =~ Oy _ 1 o h — K_Fi “e\,\No‘\‘ e“e 101E
Oz,thr z,thr gZN (k) ;
Convenient /
Laser term
Above threshold S\
Threshold free R\ 17723
a = P'/3 (k) = o0 (y > 1) = =

The rate of photon transport enhanced (k) times
Rabi splitting scales as g,/ N(k) y =15



_Diffusion

Basic equation
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Outline
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In NISQ era quantum inspired (heuristic) algorithms realized by means of photon involved

simulators may be more successful for solving some of NP-hard problems for moderate (up to
hundred of thousands) number of qubits.

teese

We can minimize computational overheads and improve speedup by means of direct arrangement
of hardware circuits for a given NP-hard problem.

The rate of photonic transport may be enhanced in complex networks (k) > 1 times. Such a
regime occurs due to simultaneous interaction of two-level systems with a quantized field through
numerous waveguide channels (graph edges) responsible for the hubs formation.

A. Bazhenov, M. M. Nikitina, D. V. Tsarev, and A. P. Alodjants, Random Laser Based on Materials in the Form of Complex Network
Structures JETP Letters, Vol. 117, No. 11, pp. 814-820 (2023)

A. Melnikov, M. Kordzanganeh, Alexander Alodjants & Ray-Kuang Lee, Quantum machine learning: from physics to software
engineering, Advances in Physics: X, 8:1 (2023)

Alodjants, A.; Zacharenko, P.; Tsarev, D.; Avdyushina, A.; Nikitina, M.; Khrennikov, A.; Boukhanovsky, A. Random Lasers as Social
Processes Simulators. Entropy 2023, 25, 1601.

A. Alodjants, A. Bazhenoy, A. Khrennikov, A.V. Bukhanovsky, Mean-field theory of social laser Scientific Reports, 12. 1-17 (2022)
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Small world phenomenon

Diameter of a random network
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nodes in a network is short - six degrees of
separation effect

<k> nodes at distance one (d=1).
<k>? nodes at distance two (d=2).
<k>? nodes at distance three (d =3).

<k>4nodes at distance d.

Random vs Levy Walks




Information spreading in complex structures

For simulation of QUBO (or some other) NP-hard computational problem we need to use some
mapping procedure to the graph

» Can we avoid minor embedding (or, some similar) procedure?

» How we can use graph topology for speedup information processing?

Biological networks Social Networks
Fenna—Matthews—Olsen (FMO) *F gim =
antenna complexes involved | ,"f ofel s l.i'*.
n natural photosynthesis | By’ i f. f =1 We should use
1 i complex network
advantages !

Bullmore, E., Sporns, O.
GraphEheoraticsl anslysis Nat Rev. Neurosci 10, 186 (2009)

Temporal pole




