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Introduction Language of the quasiprobability distributions

Quantum world in classical wording

“How far the [quantum] phenomena transcend the scope of
classical physical explanation, the account of all evidence must be
expressed in classical terms”

N. Bohr (1949)

A vivid realizations of this Bohr principle is the language of quasiprobability
distributions extensively used in phase-space formulation of

Statistical Model of Quantum Mechanics
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Introduction Language of the quasiprobability distributions

Statistical average and expectation value

Statistical averages of a function A(q, p) on phase space Ω using
the Probability Distribution Function (PDF) f (q, p):

E(A) =
∫

dΩ A(q, p) f (q, p) , with
∫

dΩ f (q, p) = 1 .

Expectation values of a Hermitian operator Â acting on the Hilbert
space H in a state ϱ:

E(Â) = Tr(Âϱ)

The Weyl correspondence: A mapping between a class of functions on the
phase space R2n and the set of operators on L(R2n)

The Wigner function for a pure quantum state ϱ = |ψ⟩⟨ψ| with residing in
a 2-dimensional phase space

W|ψ⟩(x , p) =
1
πℏ

∫
dy⟨x + y |ϱ|x − y⟩e−2ıpy/ℏ .
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Introduction Language of the quasiprobability distributions

Language of the quasiprobability distributions

In the contemporary views on quantum physics and quantum information
science the probability distribution functions perhaps play a role of a most
constructive tool.

Variety of quasiprobability distributions associated to Wigner
The Wigner function (WF) and all its relatives:

WF over non-compact phase space /continuous;
WF of a finite level quantum system over compact phase space;
WF of finite-dimensional system with discrete phase-space;
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Introduction The Stratonovich-Weyl axioms

The Stratonovich-Weyl correspondence

The Stratonovich–Weyl (SW) mapping generalizes the Weyl mapping to
the phase spaces of other types than R2n

The basic ideas of the construction of the quasiprobability distributions:
1 The co-adjoint orbit Ω of a certain Lie group G of symmetries of a

given physical system is identified with the phase space;
2 The operator associating each point of the orbit (z ∈ Ω) with a

self-adjoint operator ∆(z) is needed.

z ∈ ΩN
?7−→ ∆ ∈ P∗

N

Answer: System of the Stratonovich-Weyl axioms
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Introduction The Stratonovich-Weyl axioms

The Stratonovich-Weyl axioms

WF of a state ϱ is linear functional Wϱ(ΩN) = Tr (ϱ∆(ΩN)) given by the
kernel ∆(Ω) defined over a phase space Ω subject to the conditions:

I. Reconstruction; ρ can be build from WF as

ρ =

∫
Ω

dΩN ∆(Ω)Wρ(Ω) .

II. Hermicity; ∆(Ω) = ∆(Ω)†

III. Finite Norm; The state norm is given by the integral of WF

Trρ =

∫
Ω

dΩWρ(Ω),

∫
Ω

dΩ∆(Ω) = 1

IV. Covariance: The mapping ρ′ = U(α)ρU†(α) induces the symplectic
transformation of coordinates z ∈ Ω,

∆′(z) = ∆(z ′) , z ′ = Tαz , Tα ∈ Sp(dN) . (1)
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Introduction Wigner function of elementary N−level quantum system

Wigner function of N-level quantum system

The pair {ϱ,∆(z)} determine the Wigner function:
The density matrix ϱ ∈ PN ,
The SW kernel ∆(ΩN) ∈ P∗

N ,

Wϱ(ΩN) = Tr (ϱ∆(ΩN)) .

Quantum state ϱ from the semi-positive cone of N ×N Hermitian matrices:
PN = {X ∈ MN(C) |X = X † ,TrX = 1 ,X ≥ 0 .}

Stratonovich-Weyl kernel ∆(ΩN) from the dual space P∗
N :

P∗
N = {X ∈ MN(C) |X = X † ,TrX = 1 ,TrX 2 = N .}
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Introduction Wigner function of elementary N−level quantum system

Symplectic manifold and moduli space of qudit

The symplectic space ΩN is identified with the co-adjoint orbits of SU(N):

ΩN

∣∣∣∣
HN

→ U(N)

Iso(∆)
.

where Iso(∆) ⊂ U(N) is an isotropy group of SW kernel.

∆(ΩN) = U(ΩN)diag(π1, π2, . . . , πN)U(ΩN)
† ,

At the same time the moduli space PN of SW kernels is given by the
“master equations” on the corresponding orbit space O[P∗

N/U(N)] ,

PN :
N∑
i=1

πi = 1
N∑
i=1

π2
i = N
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Phase-space description of composite systems

What about the dichotomy “composite versus elementary” ?

Is the dichotomy already encoded in SW axioms?
If it is beyond the postulates how one can extend SW axioms?
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Phase-space description of composite systems

Quantum Composite Systems – “made from or made of”

Figure 1: Metamorphosis vs. Formation
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Phase-space description of composite systems Compositeness in Quntum Mechanics

Elementary vs. Composite

Composite system postulate in Quantum Mechanics
The Hilbert space HAB associated to a composite physical system AB is a
subspace of the tensor product of the Hilbert spaces HA and HA

HAB ⊆ HA ⊗HB ,

corresponding to its components A and B .

Question:
But still, what is an elementary quantum system ?

Standpoint:
“It is theory finally which decides what can be observed as an elementary
and what as a composite one ”.
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Phase-space description of composite systems Compositeness in Quntum Mechanics

Elementary Quantum Systems

Irreducibility condition:
From the standpoint of symmetry an elementary system means its states
change under the irreducible transformation of a certain physical symmetry

E.P. Wigner (1939)

Decomposition into elementary systems:
“Every system, even one consisting of an arbitrary number of particles, can
be decomposed into elementary systems. The usefulness of the
decomposition into elementary systems depends of how often one has
deal with linear combinations containing several elementary systems. We
consider a particle “elementary” if it does not appear to be useful to
attribute structure to it”

T.T.Newton and E.P. Wigner (1949)
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Phase-space description of composite systems Compositeness in Quntum Mechanics

QM of composite systems

If nA-dimensional system A and nB -dimensional system B are joint
together the Hilbert space of the resulting composite system is a subspace
of the tensor product of the Hilbert spaces HA and HB of subsystems:

HAB ⊂ HA⊗HB .

The state is given by the density matrix ϱAB acting on HAB , while an
information on each subsystem is encoded in the density matrices ϱA and
ϱB which are determined from ϱAB using the partial trace operation:

ϱA = trBϱAB , ϱB = trAϱAB .

The partial trace operation is equivalent to the invariant integration over
the unitary groups of subsystems,∫

UB

dµ (IA ⊗ UB) ϱ (IA ⊗ U†
B) = ϱA ⊗ IB .
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Phase-space description of composite systems Compositeness in Quntum Mechanics

Quasiprobability distributions of composite systems

Towards composition of quasiprobability distribution
1 Kolmogorov’s σ−additivity axiom ;
2 Conditional probabilities ;
3 Compositions of SW kernels ;

A conventional assumption for SW kernels of a binary composite system:

∆AB = ∆A⊗∆B ,

∆A and ∆B - the partially reduced SW kernels,

∆A = trB∆AB , ∆B = trA∆AB .
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Phase-space description of composite systems Numerical searching qubit in quatrit

Experiment I: Searching for a “potential qubit pair” in quatrit

1 Create random ensemble of quatrit SW kernels;
2 Compute partially reduce matrices

∆A = trB∆AB , ∆B = trA∆AB .

3 Find the probability distribution function of random variables:

tA = tr
(
∆A

2) , tB = tr
(
∆B

2) .
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Phase-space description of composite systems Numerical searching qubit in quatrit

Random SW kernels of 4-level system

Algorithm to generate random SW kernel ∆AB for quatrit:
(I). From the normally distributed 3-vector v = (x1, x2, x3):

N(0, 1) :
1√
2π

exp

(
−1

2
x2
i

)
, i = 1, 2, 3 .

generate the uniform distribution µ = (µ3, µ6, µ15) = v/| v | on S2;
(II). Construct the spectrum of quatrit SW kernel

π1 =
1
4
+

√
15
4

(µ3 + µ6 + µ15) , π2 =
1
4
+

√
15
4

(µ3 − µ6 − µ15) ,

π3 =
1
4
+

√
15
4

(−µ3 + µ6 − µ15) , π4 =
1
4
+

√
15
4

(−µ3 − µ6 + µ15) ;

(III). Generate 4 × 4 matrix U from the Haar unitary ensemble;
(IV) Construct the quatrit SW kernel, ∆AB = Udiag(π1, π2, π3, π4)U

†
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Phase-space description of composite systems Numerical searching qubit in quatrit

Distribution of the “potential qubit pair” in quatrit

Figure 2: Probability distribution function of random variable tB = tr(∆2
B) . The

red line corresponds to the smooth kernel distribution which gives the expectation
E[tB ] = 1.9234 . The blue line corresponds to the gamma distribution Γ[4, 1/2]
which gives the expectation value 2.
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Phase-space description of composite systems Numerical searching qubit in quatrit

Distribution of the “potential qubit pair” in quatrit

Figure 3: Probability distribution function of tA, tB .
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Phase-space description of composite systems New SW axiom of composition

Composite system postulate for SW kernel

The fifth SW postulate applicable to the case of composite systems.

V. Composite system postulate
The partially reduced matrices ∆A and ∆B are SW kernels of subsystems A
and providing the SW mapping with the Wigner functions of the partially
reduced states ϱA and ϱB respectively:

WϱA = Tr (ϱA∆NA
) ,

WϱB = Tr (ϱB∆NB
) .

This is equivalent to the following equations for SW kernel of joint system:

trA (trB∆(ΩN))
2 = NA , trB (trA∆(ΩN))

2 = NB .
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Phase-space description of composite systems A symmetry guide towards phase-space description

Symmetry and Composition

Symmetry of an elementary and finite-dimensional system:

The unitary symmetry SU(N) of the Hilbert space CN is the Global
Unitary symmetry of an elementary N−level system;

Symmetry of a composite finite-dimensional system:
If the Hilbert space structure is specified by the tensor Hilbert spaces
HA and HB :

HAB ⊂ HA⊗HB .

then the Local Unitary symmetry of the corresponding composite
system is the subgroup LU = SU(NA)× SU(NB) ⊂ SU(N).
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Phase-space description of composite systems A symmetry guide towards phase-space description

Symplectic manifold of a qudit

If a priory it is known that a quantum system is a composite, searching for
the phase space ΩNA×NB

we based on the correspondence:

Global Unitary symmetry ⇐⇒ Local Unitary symmetry

The symplectic manifold ΩNA×NB
is defined as the LU group orbits

ΩN

∣∣∣∣
HA⊗HB

→ U(NA)× U(NB)

HX
(2)

of element X from the moduli space PNA×NB
of a composite SW kernel:

PNA×NB
=

{
X ∈ P∗

NANB

∣∣∣∣ trA (trBX )2 = NA , trB (trAX )2 = NA

}
with a certain isotropy grou HX ⊂ U(NA)× U(NB).
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Phase-space description of composite systems Quatrit vs. 2-qubits

Comparing quatrit with 2-qubits

Our task is to compare 4-level system, the quatrit, and 2-qubit systems:

1 Describe the phase space Ω4 vs. Ω2×2

2 Describe the moduli space P4 vs. P2×2

The basic guide is the symmetry

For an elementary 4-level system SU(4) is Global Unitary symmetry;
For 2 qubits the Hilbert space is associated with the tensor product
and the Local Unitary symmetry is the subgroup
K = SU(2)× SU(2) ⊂ SU(4).
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Phase-space description of composite systems Quatrit vs. 2-qubits

Quatrit: Phase-space

A generic quatrit (N = 4) state is given by the density matrix

ϱQuatrit =
1
4

(
I4 +

√
6

15∑
α=1

ξαλα

)
.

The generic Stratonovich-Weyl kernel

∆(ΩN) =
1
4
I+

√
15
4

U(ΩN) (µ3λ3 + µ6λ6 + µ15λ15)U(ΩN)
† .

The Wigner function of a quatrit

Wξ(Ω4) =
1
4
+

3
√

5
4

[
µ3(n(3), ξ) + µ6(n(6), ξ) + µ15(n(15), ξ)

]
,

with
n(s)α =

1
2
Tr
[
UλsU

†λα

]
s = 3, 6, 15
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Phase-space description of composite systems Quatrit vs. 2-qubits

Quatrit: moduli space

A quatrit 2-dimensional moduli space describe 2-parametric family of
kernels that differ by their spectrum spec(∆) = {π1, π2, π3, π4}.

Figure 4: The Möbius spherical triangle
as moduli space of WF of a quatrit.

Fixing the ordered spectrum of SW
kernels of quatrit, π1 ≥ π2 ≥ π3 ≥ π4
we identify the moduli space of qua-
trit with one out of 24 Möbius trian-
gles (2, 3, 3) which tessellate 2-sphere
in the space of eigenvalues, parame-
terized by µ = (µ3, µ6, µ15) :

µ2 = 1 ,
µ3 ≥ 0, ,−µ6 ≤ µ15 ≤ µ6
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Phase-space description of composite systems Quatrit vs. 2-qubits

2-qubit; Local Unitary group

Below I consider the adjoint action K = SU(2)× SU(2) ⊂ SU(4) induced
by a certain embedding of the Lie algebra su(2)⊕ su(2) into su(4) via the
compositions of two types of embedding:

su(2) ↪→ su(4) :
[
x z
z̄ −x

]
↪→


x 0 z 0
0 x 0 z
z̄ 0 −x 0
0 z̄ 0 −x


and

su(2) ↪→ su(4) :
[

y w
w̄ −y

]
↪→


y w 0 0
w̄ −y 0 0
0 0 y w
0 0 w̄ −y


The corresponding exponent mapping su(4) → SU(4) defines the
embedding of the group SU(2)× SU(2) into SU(4).
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Phase-space description of composite systems Quatrit vs. 2-qubits

Double coset SU(2)× SU(2)\SU(4)/T 3 decomposition

Proposition: The su(4) algebra admits decomposition into the direct sum:

su(4) = k⊕ a⊕ a′ ⊕ k′ ,

where a and a′ are Abelian subalgebras such that

[a′ , a] ⊂ k ,

and k := su(2)⊕ su(2) , k′ := u(1)⊕ u(1)⊕ u(1) , with the relations:

[k, k] ⊂ k , [k′, k′] ⊂ k′ , [k, k′] ⊂ a⊕ a′ ,

The exponential map exp : su(4) → SU(4) results in corresponding Cartan
type coordinates description of the group in vicinity of the identity,

g := K exp(a) exp
(
a′
)
T3 , K ∈ SU(2)× SU(2) ,

where T3 is the maximal torus in SU(4) ,
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Phase-space description of composite systems Quatrit vs. 2-qubits

Fano form of 2-qubit SW kernel

2-qubit SW kernel in Fano basis:

∆(Ω4) =
1
4
I4 +

√
30
4

[
ζA · σA + ζB · σB +

1√
2
E ij σi ⊗ σj

]
, (3)

where σA = 1√
2
(σ10, σ20, σ30) , σB = 1√

2
(σ01, σ02, σ03) . The coefficients

of expansion ζA and ζB are a real 3-vectors and E is a real 3 × 3 matrix.
According to the master equations for composite system the norm of these
vectors and matrices is fixed:

ζA
2 =

1
5
, ζB

2 =
1
5
, tr

(
EET

)
=

3
5
.

Hence, for 2-qubit all three primary second order SU(2)× SU(2)
polynomial invariants of SW kernel are fixed, while the higher order
invariants characterize all admissible types of SW kernels.
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Phase-space description of composite systems Quatrit vs. 2-qubits

Subsystems kernels

Proposition: From SVD of SW kernel with the Cartan type coordinates
for SU(4) factor

∆(z) = U(z)diag(π1, π2, . . . , πN)U(z)† ,

it follows that the reduced SW kernels of subsystems are:

∆A =
1
2
UA

(
I2 +

√
15 (ζA · σ)

)
U†
A ,

and
∆B =

1
2
UB

(
I2 +

√
15 (ζB · σ)

)
U†
B ,

with 3-vectors whose length is fixed by the “subsystem master equations"

(ζA · ζA) = (ζB · ζB) = 1
5
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Phase-space description of composite systems Quatrit vs. 2-qubits

The moduli space of 2-qubit

Proposition: The moduli parameters of 2 qubits are determined by the
moduli parameters of SW kernel of 4-level system as whole µ3, µ6, µ15 and
the lengths of 3-vectors

ζAi =
∑
α∈H

µαOαi , i = 1, 2, 3 ,

ζBi =
∑
α∈H

µαOαi , i = 4, 5, 6 ,

defined in terms of the component A the Cartan decomposition KAT3 :

AλαA† = Oαβ λβ , A = exp{a} exp
{
a′
}
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Phase-space description of composite systems Quatrit vs. 2-qubits

The moduli space of 2-qubit

The moduli space P2×2 of 2-qubits is given by the bundle of a unit
2-sphere, two ellipsoids EA, and EB in the moduli space space P4 with
coordinates µ = {µ3, µ6, µ15}:

µµT = 1 , EA : µAµT = 1 , EB : µBµT = 1 ,

The 3 × 3 matrices A and B are:

Aαβ := 5
∑

i=1,2,3

OαiO
T
iβ , Bαβ := 5

∑
i=4,5,6

OαiO
T
iβ .

Properties of P2×2 are encoded in pairwise characteristic polynomials:

fEA∩S2
= det(tI3 + A), fEB∩S2

= det(tI3 + B), fEA∩EB
= det(tA+ B) .

Proposition: The ellipsoids and the 2-sphere overlap iff the characteristic
polynomials fEA∩S2

, fEB∩S2
and fEA∩EB

have no positive roots.
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Phase-space description of composite systems Eventuality of a compositeness

Experiment II: Searching for a “compositeness”

Algorithm of the generation of random SW kernels of 2-qubits
Generate 4 × 4 unitary matrix U from the random Haar ensemble
Compute A and B and find the spectrum µ of SW kernel from:

µµT1 , µAµT1 , µBµT = 1 ,
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Phase-space description of composite systems Eventuality of a compositeness

Probability of a “compositeness”

Figure 5: The probability distribution of
2-qubit SW kernels over the moduli
space of quatrit.

1 Effect of the concentration of
2-qubits SW kernels around one
of the vertex of Möbius triangle,
P3 =

(
1√
3
,− 1√

3
, 1√

3

)
2 Probability of a “compositeness”:

#SW kernels of 2-qubits
#SW kernels of quatrits

≈ 0.158
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Phase-space description of composite systems Faces of the “composite vs. elementary” dichotomy

Beyond the talk

Topics around dichotomy “composite vs. elementary”

Comparing nonclassicality indicators;
Interrelations - positivity of WF & separability & entanglement ;
Interrelations - marginals of WF and SW kernels .
· · ·
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Concluding remarks

Instead of Conclusion

“Мне было очень отрадно установить, что квантовая
механика лишает мир постного лика, который навязывает ему
примитивный детерминизм. В свете этой науки весь мир
предстает как азартная игра изобретального случая”

Д.И. Блохинцев
Мой путь в науке (автореферат работ)

“I found it very gratifying to establish that quantum mechanics
deprives the world of the dreary face imposed on it by primitive
determinism. In the light of this science, the whole world appears to
be a gamble of an ingenious chance.”

D.I.Blokhintsev
My Life in Science. (Summary of scientific works)
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