Russian Quantum Center

Quantum evolution through the prism of operator growth

Igor Ermakov, JINR Dubna, 28 of May 2024

Papers and People

Presented results are mostly based on:
arXiv:2401.08187 (Unified framework for efficiently computable quantum circuits) Authors:

Igor Ermakov
Steklov Institute of Mathematics RQC

Oleg Lychkovskiy
Skoltech RQC
Steklov Institute of Mathematics

Tim Byrnes
East China Normal University NYU Shanghai

General motivation

General motivation

Where is the boundary between computable and non-computable?

General motivation

Where is the boundary between computable and non-computable?
More specifically: what problems we can solve using classical and quantum computational devices that are available

General motivation

Where is the boundary between computable and non-computable?
More specifically: what problems we can solve using classical and quantum computational devices that are available

Now:

General motivation

Where is the boundary between computable and non-computable?
More specifically: what problems we can solve using classical and quantum computational devices that are available

Now:
-Laptops

General motivation

Where is the boundary between computable and non-computable?
More specifically: what problems we can solve using classical and quantum computational devices that are available

Now:
-Laptops
-Supercomputers

General motivation

Where is the boundary between computable and non-computable?
More specifically: what problems we can solve using classical and quantum computational devices that are available
-Laptops
-Supercomputers
-Different quantum computational devices like NISQs, annealers, etc..

General motivation

Where is the boundary between computable and non-computable?
More specifically: what problems we can solve using classical and quantum computational devices that are available

Hypothetically in the future:
-Laptops
-Supercomputers
-Different quantum computational devices like NISQs, annealers, etc..

General motivation

Where is the boundary between computable and non-computable?
More specifically: what problems we can solve using classical and quantum computational devices that are available

Now:
-Laptops
-Supercomputers
-Different quantum computational devices like NISQs, annealers, etc..

Hypothetically in the future:
-Universal quantum computer (Shor's algorithm, Grover search, ...)

General motivation

Where is the boundary between computable and non-computable?
More specifically: what problems we can solve using classical and quantum computational devices that are available

Now:
-Laptops
-Supercomputers
-Different quantum computational devices like NISQs, annealers, etc..

Hypothetically in the future:
-Universal quantum computer (Shor's algorithm, Grover search, ...)
-Quantum simulators, annealers, etc. (Optimisation problems, quantum chemistry material science, etc...)

General motivation

Where is the boundary between computable and non-computable?
More specifically: what problems we can solve using classical and quantum computational devices that are available

Now:
-Laptops
-Supercomputers
-Different quantum computational devices like NISQs, annealers, etc..

Hypothetically in the future:
-Universal quantum computer (Shor's algorithm, Grover search, ...)
-Quantum simulators, annealers, etc. (Optimisation problems, quantum chemistry material science, etc...)
-Something else?

General motivation

Where is the boundary between computable and non-computable?
More specifically: what problems we can solve using classical and quantum computational devices that are available

| Now: | | | |
| :--- | :--- | :--- | :--- | :--- |
| -Laptops | | | |
| -Supercomputers | | | |

Hypothetically in the future:
-Universal quantum computer (Shor's algorithm, Grover search, ...)
-Quantum simulators, annealers, etc. (Optimisation problems,
 quantum chemistry material science, etc...)
-Something else?

Ways to find boundaries of computation

Ways to find boundaries of computation

Look for rigorous bounds by using complexity theory etc.
(Fundamental results expressed as theorems)

Ways to find boundaries of computation

Look for rigorous bounds by using complexity theory etc.
(Fundamental results expressed as theorems)

Look for different examples of difficult yet solvable problems to push this boundary
(More easily accessible results, yet not so strict)

Complexity of quantum dynamics

Complexity of quantum dynamics

Solving quantum dynamics is, in general, very difficult due to exponentially growing dimensionality of the Hilbert space

Complexity of quantum dynamics

Solving quantum dynamics is, in general, very difficult due to exponentially growing dimensionality of the Hilbert space

We want to find:

Complexity of quantum dynamics

Solving quantum dynamics is, in general, very difficult due to exponentially growing dimensionality of the Hilbert space

We want to find:

Time evolution of some observable $\langle O\rangle(t)$ for a specific initial state $\left|\Psi_{0}\right\rangle$

Complexity of quantum dynamics

Solving quantum dynamics is, in general, very difficult due to exponentially growing dimensionality of the Hilbert space

We want to find:

Time evolution of some observable $\langle O\rangle(t)$ for a specific initial state $\left|\Psi_{0}\right\rangle$
The evolution can be defined as:

Complexity of quantum dynamics

Solving quantum dynamics is, in general, very difficult due to exponentially growing dimensionality of the Hilbert space

We want to find:

Time evolution of some observable $\langle O\rangle(t)$ for a specific initial state $\left|\Psi_{0}\right\rangle$
The evolution can be defined as:
Some unitary matrix U, which is given for example as quantum circuit

Complexity of quantum dynamics

Solving quantum dynamics is, in general, very difficult due to exponentially growing dimensionality of the Hilbert space

We want to find:

Time evolution of some observable $\langle O\rangle(t)$ for a specific initial state $\left|\Psi_{0}\right\rangle$
The evolution can be defined as:
Some unitary matrix U, which is given for example as quantum circuit Evolution of some Hamiltonian $H(t)$, in general time-dependent

Complexity of quantum dynamics

Solving quantum dynamics is, in general, very difficult due to exponentially growing dimensionality of the Hilbert space

We want to find:

Time evolution of some observable $\langle O\rangle(t)$ for a specific initial state $\left|\Psi_{0}\right\rangle$
The evolution can be defined as:
Some unitary matrix U, which is given for example as quantum circuit
Evolution of some Hamiltonian $H(t)$, in general time-dependent
Evolution of dissipative systems $\frac{d}{d t} O(t)=i[H, O(t)]+\mathscr{D}^{\dagger} O(t)$

Complexity of quantum dynamics

Solving quantum dynamics is, in general, very difficult due to exponentially growing dimensionality of the Hilbert space

We want to find:

Time evolution of some observable $\langle O\rangle(t)$ for a specific initial state $\left|\Psi_{0}\right\rangle$
The evolution can be defined as:
Some unitary matrix U, which is given for example as quantum circuit
Evolution of some Hamiltonian $H(t)$, in general time-dependent
Evolution of dissipative systems $\frac{d}{d t} O(t)=i[H, O(t)]+\mathscr{D}^{\dagger} O(t)$
We want to know how much memory and time it will cost us

Operator growth

Operator growth

Let us first consider evolution of a closed system in Heisenberg picture:

$$
\frac{d}{d t} O(t)=i[H, O(t)]
$$

Operator growth

Let us first consider evolution of a closed system in Heisenberg picture:

$$
\frac{d}{d t} O(t)=i[H, O(t)]
$$

Initial conditions: $O(0)=O_{0}$
O_{0} - local operator

Operator growth

Let us first consider evolution of a closed system in Heisenberg picture:

$$
\frac{d}{d t} O(t)=i[H, O(t)]
$$

Initial conditions: $O(0)=O_{0}$
O_{0} - local operator
Solution of the Heisenberg equation can be written as:

$$
O(t)=\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!}[H, \ldots,[H,[H, O]]]
$$

Operator growth

Let us first consider evolution of a closed system in Heisenberg picture:

$$
\frac{d}{d t} O(t)=i[H, O(t)]
$$

Initial conditions: $O(0)=O_{0}$
O_{0} - local operator
Solution of the Heisenberg equation can be written as:
($O(t)=\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!}[H, \ldots,[H,[H, O]]]$

Universal Operator Growth Hypothesis

Universal Operator Growth Hypothesis

Parker, Daniel E., Xiangyu Cao, Alexander Avdoshkin, Thomas Scaffidi, and Ehud Altman. "A universal operator growth hypothesis." Physical Review X 9, no. 4 (2019): 041017.

Universal Operator Growth Hypothesis

Parker, Daniel E., Xiangyu Cao, Alexander Avdoshkin, Thomas Scaffidi, and Ehud Altman. "A universal operator growth hypothesis." Physical Review X 9, no. 4 (2019): 041017.

Recursion method:

Universal Operator Growth Hypothesis

Parker, Daniel E., Xiangyu Cao, Alexander Avdoshkin, Thomas Scaffidi, and Ehud Altman. "A universal operator growth hypothesis." Physical Review X 9, no. 4 (2019): 041017.

Recursion method:
$\mathscr{L}=[H, \cdot]$
$\left.\mid O_{0}\right):=O_{0}$
$\left.\left|O_{1}\right|:=b_{1}^{-1} \mathscr{L} \mid O_{0}\right)$
$b_{1}=\left(O_{0} \mathscr{L} \mid \mathscr{L} O_{0}\right)^{1 / 2}$

Universal Operator Growth Hypothesis

Parker, Daniel E., Xiangyu Cao, Alexander Avdoshkin, Thomas Scaffidi, and Ehud Altman. "A universal operator growth hypothesis." Physical Review X 9, no. 4 (2019): 041017.

Recursion method:
$\mathscr{L}=[H, \cdot]$
$\left.\mid O_{0}\right):=O_{0}$
$\left.\left.\mid O_{1}\right):=b_{1}^{-1} \mathscr{L} \mid O_{0}\right)$
$b_{1}=\left(O_{0} \mathscr{L} \mid \mathscr{L} O_{0}\right)^{1 / 2}$
Krylov basis:

Universal Operator Growth Hypothesis

Parker, Daniel E., Xiangyu Cao, Alexander Avdoshkin, Thomas Scaffidi, and Ehud Altman. "A universal operator growth hypothesis." Physical Review X 9, no. 4 (2019): 041017.

Recursion method:
$\mathscr{L}=[H, \cdot]$
$\left.\mid O_{0}\right):=O_{0}$
$\left.\left.\mid O_{1}\right):=b_{1}^{-1} \mathscr{L} \mid O_{0}\right)$
$b_{1}=\left(O_{0} \mathscr{L} \mid \mathscr{L} O_{0}\right)^{1 / 2}$
Krylov basis:
$\left.\left.\left|A_{n}\right|:=\mathscr{L} \mid O_{n-1}\right)-b_{n-1} \mid O_{n-2}\right)$,
$b_{n}=\left(A_{n} \mid A_{n}\right)^{1 / 2}$,
$\left|O_{n}\right|:=b_{n}^{-1}\left|A_{n}\right|$

Universal Operator Growth Hypothesis

Parker, Daniel E., Xiangyu Cao, Alexander Avdoshkin, Thomas Scaffidi, and Ehud Altman. "A universal operator growth hypothesis." Physical Review X 9, no. 4 (2019): 041017.

Recursion method:
$\mathscr{L}=[H, \cdot]$
$\left.\mid O_{0}\right):=O_{0}$
$\left.\left.\mid O_{1}\right):=b_{1}^{-1} \mathscr{L} \mid O_{0}\right)$
$b_{1}=\left(O_{0} \mathscr{L} \mid \mathscr{L} O_{0}\right)^{1 / 2}$
Krylov basis:
$\left.\left.\left|A_{n}\right|:=\mathscr{L} \mid O_{n-1}\right)-b_{n-1} \mid O_{n-2}\right)$,
$b_{n}=\left(A_{n} \mid A_{n}\right)^{1 / 2}$,
$\left|O_{n}\right|:=b_{n}^{-1}\left|A_{n}\right|$

Operator growth in the basis of Pauli strings

Operator growth in the basis of Pauli strings

Pauli string is product of Pauli operators on different sites:

Operator growth in the basis of Pauli strings

Pauli string is product of Pauli operators on different sites:
Consider L qubits

Operator growth in the basis of Pauli strings

Pauli string is product of Pauli operators on different sites:
Consider L qubits

$$
P=\alpha S_{1} \otimes \ldots \otimes S_{L} \quad \alpha \in \mathbb{C} \quad S_{i}=\left\{I_{i}, X_{i}, Y_{i}, Z_{i}\right\}
$$

Operator growth in the basis of Pauli strings

Pauli string is product of Pauli operators on different sites:
Consider L qubits

$$
P=\alpha S_{1} \otimes \ldots \otimes S_{L} \quad \alpha \in \mathbb{C} \quad S_{i}=\left\{I_{i}, X_{i}, Y_{i}, Z_{i}\right\}
$$

For example:

Operator growth in the basis of Pauli strings

Pauli string is product of Pauli operators on different sites:
Consider L qubits

$$
P=\alpha S_{1} \otimes \ldots \otimes S_{L} \quad \alpha \in \mathbb{C} \quad S_{i}=\left\{I_{i}, X_{i}, Y_{i}, Z_{i}\right\}
$$

For example:

$$
\begin{aligned}
& Z_{n}, \quad X_{1} I_{2} Y_{3}, \quad X_{1} Z_{2} \ldots Z_{L-1} Y_{L}-\text { Pauli strings } \\
& X_{1}+Y_{1}-\text { Not a Pauli string }
\end{aligned}
$$

Operator growth in the basis of Pauli strings

Pauli string is product of Pauli operators on different sites:
Consider L qubits

$$
P=\alpha S_{1} \otimes \ldots \otimes S_{L} \quad \alpha \in \mathbb{C} \quad S_{i}=\left\{I_{i}, X_{i}, Y_{i}, Z_{i}\right\}
$$

For example:

$$
\begin{aligned}
& Z_{n}, \quad X_{1} I_{2} Y_{3}, \quad X_{1} Z_{2} \ldots Z_{L-1} Y_{L}-\text { Pauli strings } \\
& X_{1}+Y_{1}-\text { Not a Pauli string }
\end{aligned}
$$

Pauli strings form orthogonal basis in the 4^{L} dimensional operator space

Operator growth in case of Clifford circuits

Operator growth in case of Clifford circuits

Clifford Circuit consists of Clifford gates

Operator growth in case of Clifford circuits

Clifford Circuit consists of Clifford gates
Each Clifford gate maps Pauli string to another Pauli string

Operator growth in case of Clifford circuits

Clifford Circuit consists of Clifford gates
Each Clifford gate maps Pauli string to another Pauli string
$U_{C l} P=P^{\prime}$

Operator growth in case of Clifford circuits

Clifford Circuit consists of Clifford gates
Each Clifford gate maps Pauli string to another Pauli string

$$
U_{C l} P=P^{\prime}
$$

Consider randomly generated
Clifford circuit $O_{0}=Z_{1}$ and $L=4$

Operator growth in case of Clifford circuits

Clifford Circuit consists of Clifford gates
Each Clifford gate maps Pauli string to another Pauli string

$$
U_{C l} P=P^{\prime}
$$

Consider randomly generated Clifford circuit $O_{0}=Z_{1}$ and $L=4$

0
${ }^{*} Z_{2} X_{3} 20{ }^{Z_{1} X_{4}{ }^{\bullet}}$
${ }^{\bullet} Y_{1} Y_{4} \quad Y_{2} Y_{3}$ 。
$\stackrel{.}{\cdot} \cdot{ }_{-1}{\underset{2}{2}}_{Y_{2}}^{Y_{1}}{ }^{\circ}{ }_{Y}$

Operator growth in case of Clifford circuits

Clifford Circuit consists of Clifford gates
Each Clifford gate maps Pauli string to another Pauli string

$$
U_{C l} P=P^{\prime}
$$

Consider randomly generated
Clifford circuit $O_{0}=Z_{1}$ and $L=4$

Operator growth in case of Clifford circuits

Clifford Circuit consists of Clifford gates
Each Clifford gate maps Pauli string to another Pauli string

$$
U_{C l} P=P^{\prime}
$$

Consider randomly generated Clifford circuit $O_{0}=Z_{1}$ and $L=4$

0
${ }^{*} Z_{2} X_{3} 20^{Z_{1} X_{4}}$

$\because Y_{0} Z_{1} Z_{0}^{Y_{2}}$ $Y_{1} Y_{2} X_{3} X_{4}$

Operator growth in case of Clifford circuits

Clifford Circuit consists of Clifford gates
Each Clifford gate maps Pauli string to another Pauli string

$$
U_{C l} P=P^{\prime}
$$

Consider randomly generated Clifford circuit $O_{0}=Z_{1}$ and $L=4$

$$
0
$$

$20 \cdot 12+2 \cdot 6+1+1=4^{4}$

$$
\begin{aligned}
& { }^{*} Z_{2} X_{3} 20{ }_{Y_{1} X_{4}}^{Z_{1} X^{\bullet}} \quad X_{2}^{\bullet} Z_{3}^{*} X_{1} Z_{4} \\
& { }^{\bullet} Y_{1} Y_{4} \\
& Y_{1} Y_{2} X_{3} X_{4}
\end{aligned}
$$

Operator growth in case of Universal circuits

Operator growth in case of Universal circuits

Now let us add universality enabling gates

Operator growth in case of Universal circuits

Now let us add universality enabling gates
Clifford gates +T -gate $T=e^{i Z \pi / 8}$ are universal (any unitary can be made)

Operator growth in case of Universal circuits

Now let us add universality enabling gates
Clifford gates +T -gate $T=e^{i Z \pi / 8}$ are universal (any unitary can be made)

Operator growth in case of Universal circuits

Now let us add universality enabling gates
Clifford gates +T -gate $T=e^{i Z \pi / 8}$ are universal (any unitary can be made)
Randomly generated circuit $O_{0}=X_{3}$ and $L=4$

Operator growth in case of Universal circuits

Now let us add universality enabling gates
Clifford gates +T -gate $T=e^{i Z \pi / 8}$ are universal (any unitary can be made)
Randomly generated circuit $O_{0}=X_{3}$ and $L=4$

Evolution occurs inside the entire operator space except for $I=I_{1} \ldots I_{L}$

Operator growth in case of Universal circuits

Now let us add universality enabling gates
Clifford gates +T -gate $T=e^{i Z \pi / 8}$ are universal (any unitary can be made)
Randomly generated circuit $O_{0}=X_{3}$ and $L=4$

Evolution occurs inside the entire operator space except for $I=I_{1} \ldots I_{L}$

$$
P=\sum_{n=1}^{4^{L}} \lambda_{n} B_{n}{\left\{B_{n}\right\}_{n=1}^{4^{L}} \text { Basis of Pauli strings }}
$$

Operator growth in case of Matchgate circuits

Operator growth in case of Matchgate circuits

Is there anything in between simple Clifford evolution and universal evolution?

Operator growth in case of Matchgate circuits

Is there anything in between simple Clifford evolution and universal evolution?
Yes! In case of Matchgate circuits operators $O_{0}=Z_{n}$ always live in the space with dimensionality $2 L^{2}-L$

Operator growth in case of Matchgate circuits

Is there anything in between simple Clifford evolution and universal evolution?
Yes! In case of Matchgate circuits operators $O_{0}=Z_{n}$ always live in the space with dimensionality $2 L^{2}-L$

Operator growth in case of Matchgate circuits

Is there anything in between simple Clifford evolution and universal evolution?
Yes! In case of Matchgate circuits operators $O_{0}=Z_{n}$ always live in the space with dimensionality $2 L^{2}-L$

$$
Z_{n}(t)=\sum_{n=1}^{2 L^{2}-L} \lambda_{n} B_{n}
$$

Operator growth in case of Matchgate circuits

Is there anything in between simple Clifford evolution and universal evolution?
Yes! In case of Matchgate circuits operators $O_{0}=Z_{n}$ always live in the space with dimensionality $2 L^{2}-L$

$$
Z_{n}(t)=\sum_{n=1}^{2 L^{2}-L} \lambda_{n} B_{n}
$$

Matchgate circuits are equivalent to free-fermionic spin chains

Who is matchgate?

Who is matchgate?

Let us introduce the matchgate operator $G(A, B)$ acting on qubits A and B

$$
G(A, B)=\left(\begin{array}{cccc}
A_{11} & 0 & 0 & A_{12} \\
0 & B_{11} & B_{12} & 0 \\
0 & B_{21} & B_{22} & 0 \\
A_{21} & 0 & 0 & A_{22}
\end{array}\right) \quad \begin{gathered}
G(A, B)=\exp \left(i \sum_{i=1}^{6} \alpha_{i} G_{i}\right) \\
\operatorname{det} A=\operatorname{det} B \text { If satisfied then } \\
G(A, B) \text { is a matchgate }
\end{gathered}
$$

Who is matchgate?

Let us introduce the matchgate operator $G(A, B)$ acting on qubits A and B

$$
\begin{aligned}
& G(A, B)=\left(\begin{array}{cccc}
A_{11} & 0 & 0 & A_{12} \\
0 & B_{11} & B_{12} & 0 \\
0 & B_{21} & B_{22} & 0 \\
A_{21} & 0 & 0 & A_{22}
\end{array}\right) G(A, B)=\exp \left(i \sum_{i=1}^{6} \alpha_{i} G_{i}\right) \\
& \operatorname{det} A=\operatorname{det} B \text { If satisfied then } \\
& G(A, B) \text { is a matchgate }
\end{aligned}
$$

There is a mapping between matchgates and disordered XY chain

Who is matchgate?

Let us introduce the matchgate operator $G(A, B)$ acting on qubits A and B

There is a mapping between matchgates and disordered XY chain

$$
H=\sum_{i=1}^{L} J_{i}^{x x}(t) X_{i} X_{i+1}+J_{i}^{y y}(t) Y_{i} Y_{i+1}+J_{i}^{x y}(t) X_{i} Y_{i+1}+J_{i}^{y x}(t) Y_{i} X_{i+1}+h_{i}^{z}(t) Z_{i}
$$

where X_{i}, Y_{i}, Z_{i} are Pauli matrices acting on i th site, L in the number of qubits, $J_{i}^{\alpha}, h_{i}^{z}$ are, in general, time dependent coefficients

Classical simulability of matchgates (PI-SO)

Classical simulability of matchgates (PI-SO)

Dynamics of such Hamiltonians:

$$
H=\sum_{i=1}^{L} J_{i}^{x x}(t) X_{i} X_{i+1}+J_{i}^{y y}(t) Y_{i} Y_{i+1}+J_{i}^{x y}(t) X_{i} Y_{i+1}+J_{i}^{y x}(t) Y_{i} X_{i+1}+h_{i}^{z}(t) Z_{i}
$$

Classical simulability of matchgates (PI-SO)

Dynamics of such Hamiltonians:

$$
H=\sum_{i=1}^{L} J_{i}^{x x}(t) X_{i} X_{i+1}+J_{i}^{y y}(t) Y_{i} Y_{i+1}+J_{i}^{x y}(t) X_{i} Y_{i+1}+J_{i}^{y x}(t) Y_{i} X_{i+1}+h_{i}^{z}(t) Z_{i}
$$

As well as circuits composed of nearest-neighbour matchgates is exactly solvable when:

Classical simulability of matchgates (PI-SO)

Dynamics of such Hamiltonians:

$$
H=\sum_{i=1}^{L} J_{i}^{x x}(t) X_{i} X_{i+1}+J_{i}^{y y}(t) Y_{i} Y_{i+1}+J_{i}^{x y}(t) X_{i} Y_{i+1}+J_{i}^{y x}(t) Y_{i} X_{i+1}+h_{i}^{z}(t) Z_{i}
$$

As well as circuits composed of nearest-neighbour matchgates is exactly solvable when:

1. All interactions are nearest-neighbour

Classical simulability of matchgates (PI-SO)

Dynamics of such Hamiltonians:

$$
H=\sum_{i=1}^{L} J_{i}^{x x}(t) X_{i} X_{i+1}+J_{i}^{y y}(t) Y_{i} Y_{i+1}+J_{i}^{x y}(t) X_{i} Y_{i+1}+J_{i}^{y x}(t) Y_{i} X_{i+1}+h_{i}^{z}(t) Z_{i}
$$

As well as circuits composed of nearest-neighbour matchgates is exactly solvable when:

1. All interactions are nearest-neighbour
2. Initial state $\left|\Psi_{0}\right\rangle$ is a product state

Classical simulability of matchgates (PI-SO)

Dynamics of such Hamiltonians:

$$
H=\sum_{i=1}^{L} J_{i}^{x x}(t) X_{i} X_{i+1}+J_{i}^{y y}(t) Y_{i} Y_{i+1}+J_{i}^{x y}(t) X_{i} Y_{i+1}+J_{i}^{y x}(t) Y_{i} X_{i+1}+h_{i}^{z}(t) Z_{i}
$$

As well as circuits composed of nearest-neighbour matchgates is exactly solvable when:

1. All interactions are nearest-neighbour
2. Initial state $\left|\Psi_{0}\right\rangle$ is a product state
3. The calculated outcome is measurement of a single qubit in computational basis $\left\langle Z_{i}\right\rangle$ out

Classical simulability of matchgates (PI-SO)

Dynamics of such Hamiltonians:

$$
H=\sum_{i=1}^{L} J_{i}^{x x}(t) X_{i} X_{i+1}+J_{i}^{y y}(t) Y_{i} Y_{i+1}+J_{i}^{x y}(t) X_{i} Y_{i+1}+J_{i}^{y x}(t) Y_{i} X_{i+1}+h_{i}^{z}(t) Z_{i}
$$

As well as circuits composed of nearest-neighbour matchgates is exactly solvable when:

1. All interactions are nearest-neighbour
2. Initial state $\left|\Psi_{0}\right\rangle$ is a product state
3. The calculated outcome is measurement of a single qubit in computational basis $\left\langle Z_{i}\right\rangle_{\text {out }}$

Valiant, Leslie G. "Quantum computers that can be simulated classically in polynomial time." Proceedings of the thirty-third annual ACM symposium on Theory of computing. 2001.
Jozsa, Richard, and Akimasa Miyake. "Matchgates and classical simulation of quantum circuits." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464.2100 (2008): 3089-3106.

Classical simulability of matchgates (PI-SO)

Dynamics of such Hamiltonians:

$$
H=\sum_{i=1}^{L} J_{i}^{x x}(t) X_{i} X_{i+1}+J_{i}^{y y}(t) Y_{i} Y_{i+1}+J_{i}^{x y}(t) X_{i} Y_{i+1}+J_{i}^{y x}(t) Y_{i} X_{i+1}+h_{i}^{z}(t) Z_{i}
$$

As well as circuits composed of nearest-neighbour matchgates is exactly solvable when:

1. All interactions are nearest-neighbour
2. Initial state $\left|\Psi_{0}\right\rangle$ is a product state
3. The calculated outcome is measurement of a single qubit in computational basis $\left\langle Z_{i}\right\rangle$ out

Valiant, Leslie G. "Quantum computers that can be simulated classically in polynomial time." Proceedings of the thirty-third annual ACM symposium on Theory of computing. 2001.
Jozsa, Richard, and Akimasa Miyake. "Matchgates and classical simulation of quantum circuits." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464.2100 (2008): 3089-3106.

Quantum evolution with dissipation

Quantum evolution with dissipation

Now let us consider generic quantum circuit with dissipation:

Quantum evolution with dissipation

Now let us consider generic quantum circuit with dissipation:

							-	
							wD	wD
						\| y_{0})	$U_{1} \cdots$	U_{L}
							w	w

Quantum evolution with dissipation

Now let us consider generic quantum circuit with dissipation:
Dissipation can be described by GKSL equation:

Quantum evolution with dissipation

Now let us consider generic quantum circuit with dissipation:
Dissipation can be described by GKSL equation:

$$
\begin{aligned}
& \frac{d}{d t} O(t)=i[H, O(t)]+\mathscr{D}^{\dagger} O(t) \\
& \mathscr{D}^{\dagger} O(t) \equiv \gamma \sum_{j}\left(l_{j}^{\dagger} O l_{j}-\frac{1}{2}\left\{l_{j}^{\dagger} l_{j}, O\right\}\right)
\end{aligned}
$$

a
\vdots
$\left.y_{0}\right\rangle$

Quantum evolution with dissipation

Now let us consider generic quantum circuit with dissipation:
Dissipation can be described by GKSL equation:

$$
\begin{aligned}
& \frac{d}{d t} O(t)=i[H, O(t)]+\mathscr{D}^{\dagger} O(t) \\
& \mathscr{D}^{\dagger} O(t) \equiv \gamma \sum_{j}\left(l_{j}^{\dagger} O l_{j}-\frac{1}{2}\left\{l_{j}^{\dagger} l_{j}, O\right\}\right)
\end{aligned}
$$

Lindblad operators are usually chosen as:

$$
l_{j}^{\alpha}=X_{j}, Y_{j}, Z_{j}
$$

Quantum evolution with dissipation

Now let us consider generic quantum circuit with dissipation:
Dissipation can be described by GKSL equation:

$$
\begin{aligned}
& \frac{d}{d t} O(t)=i[H, O(t)]+\mathscr{D}^{\dagger} O(t) \\
& \mathscr{D}^{\dagger} O(t) \equiv \gamma \sum_{j}\left(l_{j}^{\dagger} O l_{j}-\frac{1}{2}\left\{l_{j}^{\dagger} l_{j}, O\right\}\right)
\end{aligned}
$$

Lindblad operators are usually chosen as:

$$
l_{j}^{\alpha}=X_{j}, Y_{j}, Z_{j}
$$

When acting on the Pauli string:

$$
\mathscr{D}^{\dagger} B_{n}=e^{-2 \gamma q_{n} t} B_{n}
$$

q_{n} is the number of non identical operators in B_{n}

Quantum evolution with dissipation

Now let us consider generic quantum circuit with dissipation:
Dissipation can be described by GKSL equation:

$$
\begin{aligned}
& \frac{d}{d t} O(t)=i[H, O(t)]+\mathscr{D}^{\dagger} O(t) \\
& \mathscr{D}^{\dagger} O(t) \equiv \gamma \sum_{j}\left(l_{j}^{\dagger} O l_{j}-\frac{1}{2}\left\{l_{j}^{\dagger} l_{j}, O\right\}\right)
\end{aligned}
$$

Lindblad operators are usually chosen as:

$$
l_{j}^{\alpha}=X_{j}, Y_{j}, Z_{j}
$$

When acting on the Pauli string:

$$
\mathscr{D}^{\dagger} B_{n}=e^{-2 \gamma q_{n} t} B_{n}
$$

q_{n} is the number of non identical operators in B_{n}
a

Significant and insignificant operators

Significant and insignificant operators

During evolution many operators gets suppressed

Significant and insignificant operators

During evolution many operators gets suppressed
Let us introduce the number of significant operators:

Significant and insignificant operators

During evolution many operators gets suppressed
Let us introduce the number of significant operators:

$$
\mathcal{N}_{\epsilon}=\sum_{j=1}^{4^{N}} T_{\epsilon}\left(\left|\lambda_{j}^{(L)}\right|\right), \quad T_{\epsilon}(x)=\theta(x-\epsilon)
$$

If amplitude of operator is less than ϵ then it is not counted

$$
P=\sum_{n=1}^{4^{L}} \lambda_{n} B_{n}
$$

Significant and insignificant operators

During evolution many operators gets suppressed
Let us introduce the number of significant operators:

$$
\mathcal{N}_{\epsilon}=\sum_{j=1}^{4^{N}} T_{\epsilon}\left(\left|\lambda_{j}^{(L)}\right|\right), \quad T_{\epsilon}(x)=\theta(x-\epsilon)
$$

If amplitude of operator is less than ϵ then it is not counted

$$
P=\sum_{n=1}^{4^{L}} \lambda_{n} B_{n}
$$

Significant and insignificant operators

During evolution many operators gets suppressed
Let us introduce the number of significant operators:

$$
\mathcal{N}_{\epsilon}=\sum_{j=1}^{4^{N}} T_{\epsilon}\left(\left|\lambda_{j}^{(L)}\right|\right), \quad T_{\epsilon}(x)=\theta(x-\epsilon)
$$

If amplitude of operator is less than ϵ then it is not counted

$$
P=\sum_{n=1}^{4^{L}} \lambda_{n} B_{n}
$$

Significant and insignificant operators

During evolution many operators gets suppressed
Let us introduce the number of significant operators:

$$
\mathcal{N}_{\epsilon}=\sum_{j=1}^{4^{N}} T_{\epsilon}\left(\left|\lambda_{j}^{(L)}\right|\right), \quad T_{\epsilon}(x)=\theta(x-\epsilon)
$$

If amplitude of operator is less than ϵ then it is not counted

$$
P=\sum_{n=1}^{4^{L}} \lambda_{n} B_{n}
$$

Significant and insignificant operators

During evolution many operators gets suppressed
Let us introduce the number of significant operators:

$$
\mathcal{N}_{\epsilon}=\sum_{j=1}^{4^{N}} T_{\epsilon}\left(\left|\lambda_{j}^{(L)}\right|\right), \quad T_{\epsilon}(x)=\theta(x-\epsilon)
$$

If amplitude of operator is less than ϵ then it is not counted

$$
P=\sum_{n=1}^{4^{L}} \lambda_{n} B_{n}
$$

Significant and insignificant operators

During evolution many operators gets suppressed
Let us introduce the number of significant operators:

$$
\mathcal{N}_{\epsilon}=\sum_{j=1}^{4^{N}} T_{\epsilon}\left(\left|\lambda_{j}^{(L)}\right|\right), \quad T_{\epsilon}(x)=\theta(x-\epsilon)
$$

If amplitude of operator is less than ϵ then it is not counted

$$
P=\sum_{n=1}^{4^{L}} \lambda_{n} B_{n}
$$

Significant and insignificant operators

During evolution many operators gets suppressed
Let us introduce the number of significant operators:

$$
\mathcal{N}_{\epsilon}=\sum_{j=1}^{4^{N}} T_{\epsilon}\left(\left|\lambda_{j}^{(L)}\right|\right), \quad T_{\epsilon}(x)=\theta(x-\epsilon)
$$

If amplitude of operator is less than ϵ then it is not counted

$$
P=\sum_{n=1}^{4^{L}} \lambda_{n} B_{n}
$$

Significant and insignificant operators

During evolution many operators gets suppressed
Let us introduce the number of significant operators:

$$
\mathcal{N}_{\epsilon}=\sum_{j=1}^{4^{N}} T_{\epsilon}\left(\left|\lambda_{j}^{(L)}\right|\right), \quad T_{\epsilon}(x)=\theta(x-\epsilon)
$$

If amplitude of operator is less than ϵ then it is not counted

$$
\mathbf{N}_{\varepsilon}
$$

$$
P=\sum_{n=1}^{4^{L}} \lambda_{n} B_{n}
$$

Significant and insignificant operators

During evolution many operators gets suppressed
Let us introduce the number of significant operators:

$$
\mathcal{N}_{\epsilon}=\sum_{j=1}^{4^{N}} T_{\epsilon}\left(\left|\lambda_{j}^{(L)}\right|\right), \quad T_{\epsilon}(x)=\theta(x-\epsilon)
$$

If amplitude of operator is less than ϵ then it is not counted

$$
P=\sum_{n=1}^{4^{L}} \lambda_{n} B_{n}
$$

This peak remains suppressed in thermodynamic limit

General picture

In general, the number of significant operators can be approximated as:

$$
\mathcal{N}_{\epsilon} \propto \frac{D e^{-\epsilon \gamma \tau L} \bar{d}^{L}}{D-1+a \bar{d}^{L}}
$$

Here D order of the graph and \bar{d} - mean vertex out degree per layer
τ, α - fit parameters

circuit depth L

Truncation algorithm for simulation of observables

We developed a numerical algorithm that utilizes the fact that operator evolution is restricted

Current state of research in this field

Current state of research in this field

Schuster, Thomas, and Norman Y. Yao. "Operator growth in open quantum systems." Physical Review Letters 131, no. 16 (2023): 160402.

Current state of research in this field

Schuster, Thomas, and Norman Y. Yao. "Operator growth in open quantum systems." Physical Review Letters 131, no. 16 (2023): 160402.

Yan, Yuxuan, Zhenyu Du, Junjie Chen, and Xiongfeng Ma. "Limitations of Noisy Quantum Devices in Computational and Entangling Power." arXiv preprint arXiv:2306.02836 (2023).

Current state of research in this field

Schuster, Thomas, and Norman Y. Yao. "Operator growth in open quantum systems." Physical Review Letters 131, no. 16 (2023): 160402.

Yan, Yuxuan, Zhenyu Du, Junjie Chen, and Xiongfeng Ma. "Limitations of Noisy Quantum Devices in Computational and Entangling Power." arXiv preprint arXiv:2306.02836 (2023).

Aharonov, Dorit, Xun Gao, Zeph Landau, Yunchao Liu, and Umesh Vazirani. "A polynomial-time classical algorithm for noisy random circuit sampling." In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, pp. 945-957. 2023.

Current state of research in this field

Schuster, Thomas, and Norman Y. Yao. "Operator growth in open quantum systems." Physical Review Letters 131, no. 16 (2023): 160402.

Yan, Yuxuan, Zhenyu Du, Junjie Chen, and Xiongfeng Ma. "Limitations of Noisy Quantum Devices in Computational and Entangling Power." arXiv preprint arXiv:2306.02836 (2023).

Aharonov, Dorit, Xun Gao, Zeph Landau, Yunchao Liu, and Umesh Vazirani. "A polynomial-time classical algorithm for noisy random circuit sampling." In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, pp. 945-957. 2023.

Pashayan, Hakop, Joel J. Wallman, and Stephen D. Bartlett. "Estimating outcome probabilities of quantum circuits using quasiprobabilities." Physical review letters 115, no. 7 (2015): 070501.

Conclusions

Conclusions

Operator growth provides a unifying picture for quantum circuits of different complexity

Conclusions

Operator growth provides a unifying picture for quantum circuits of different complexity

There are cases of intermediate complexity such as matchgate circuits or circuits with weak dissipation

Conclusions

Operator growth provides a unifying picture for quantum circuits of different complexity

There are cases of intermediate complexity such as matchgate circuits or circuits with weak dissipation

Dissipative quantum dynamics seems to be more easily simulatable than unitary

Thanks for attention!

