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Look for rigorous bounds by using 

complexity theory etc.

(Fundamental results expressed 

as theorems)

Look for different examples of 

difficult yet solvable problems to 

push this boundary

(More easily accessible results, 

yet not so strict)
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Solving quantum dynamics is, in general, very difficult due to 

exponentially growing dimensionality of the Hilbert space

We want to find:

Time evolution of some observable  for a specific initial state ⟨O⟩(t) |Ψ0⟩
The evolution can be defined as:

Some unitary matrix , which is given for example as quantum circuitU
Evolution of some Hamiltonian , in general time-dependentH(t)

Evolution of dissipative systems 
d
dt

O(t) = i[H, O(t)] + 𝒟†O(t)

We want to know how much memory and time it will cost us
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O(t) = i[H, O(t)]

Initial conditions: O(0) = O0

 — local operatorO0 Solution of the Heisenberg equation can be written as:

O(t) =
∞

∑
n=0

(it)n

n!
[H, …, [H, [H, O]]]

Swingle, Brian. "Unscrambling the physics of out-of-
time-order correlators." Nature Physics 14.10 
(2018): 988-990.
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Operator growth in the basis of Pauli strings
Pauli string is product of Pauli operators on different sites:

Consider  qubitsL

P = αS1 ⊗ … ⊗ SL α ∈ ℂ Si = {Ii, Xi, Yi, Zi}

For example:

Zn, X1I2Y3, X1Z2…ZL−1YL — Pauli strings

X1 + Y1 — Not a Pauli string

Pauli strings form orthogonal basis in the  dimensional operator space4L
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Now let us add universality enabling gates

Clifford gates + T-gate  are universal (any unitary can be made)T = eiZπ/8

Randomly generated circuit

 and O0 = X3 L = 4

Evolution occurs inside the 

entire operator space except for I = I1…IL

P =
4L

∑
n=1

λnBn

 Basis of Pauli strings{Bn}4L

n=1
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Yes! In case of Matchgate circuits operators 

always live in the space with dimensionality 

O0 = Zn
2L2 − L

Zn(t) =
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∑
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λnBn

Matchgate circuits are equivalent to free-fermionic spin chains
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Now let us consider generic quantum circuit with dissipation:

Dissipation can be described by GKSL equation:
d
dt

O(t) = i[H, O(t)] + 𝒟†O(t)

𝒟†O(t) ≡ γ∑
j

(l†
j Olj −

1
2

{l†
j lj, O})

Lindblad operators are usually chosen as:
lα
j = Xj, Yj, Zj

When acting on the Pauli string:

𝒟†Bn = e−2γqntBn

 is the number of non identical operators in qn Bn

𝒟†Z1 = e−2γtZ1
𝒟†X1X2 = e−4γtX1X2
𝒟†X1Z2Y3 = e−6γtX1Z2Y3
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This peak remains suppressed in thermodynamic limit
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In general, the number of significant operators

can be approximated as:

𝒩ϵ ∝
De−ϵγτLd̄L

D − 1 + ad̄L

Here  order of the graph and 

 — mean vertex out degree per layer


 — fit parameters 

D
d̄
τ, α



Truncation algorithm for simulation of observables
We developed a numerical algorithm that utilizes the fact 

that operator evolution is restricted
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global
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Conclusions
Operator growth provides a unifying picture for quantum circuits of different complexity

There are cases of intermediate complexity such as 

matchgate circuits or circuits with weak dissipation

Dissipative quantum dynamics seems to be more easily simulatable than unitary



Thanks for attention!


