

Steklov Mathematical Institute

Quantum evolution through the prism of operator growth

Igor Ermakov, JINR Dubna, 28 of May 2024

Russian Quantum Center

Papers and People

Presented results are mostly based on: arXiv:2401.08187 (Unified framework for efficiently computable quantum circuits) Authors:

Igor Ermakov Steklov Institute of **Mathematics** RQC

Oleg Lychkovskiy Skoltech RQC Steklov Institute of Mathematics

Tim Byrnes East China Normal University NYU Shanghai

Where is the boundary between computa

ab	e and	d nor	I-CON	nputa	able?			

Where is the boundary between computa

More specifically: what problems we can computational devices that are available

ab	e and	d nor	I-CON	nputa	able?				
n s	solve	using	clas	sical	and	quan	tum		

Where is the boundary between computa

More specifically: what problems we can computational devices that are available

ab	e and	d nor	I-CON	nputa	able?				
n s	solve	using	clas	sical	and	quan	tum		

Where is the boundary between computa

More specifically: what problems we can computational devices that are available

ab	e and	d nor	I-CON	nputa	able?				
n s	solve	using	clas	sical	and	quan	tum		

Where is the boundary between computa

More specifically: what problems we car computational devices that are available

ab	e and	d nor	I-CON	nputa	able?				
n s	solve	using	clas	sical	and	quan	tum		

Where is the boundary between computa

More specifically: what problems we can computational devices that are available

Now:

- -Laptops
- -Supercomputers
- Different quantum computational devices like NISQs, annealers, etc

ab	le and	d nor	1-CON	nputa	able?				
n s	solve	using	clas	sical	and	quan	tum		
C									
, <u>o</u> l Liiliilii									

Where is the boundary between computa

More specifically: what problems we can computational devices that are available

Now:

- -Laptops
- -Supercomputers
- Different quantum computational devices like NISQs, annealers, etc

abl	le and	d nor	1-con	nputa	able?				
n s	solve	using	clas	sical	and	quan	tum		
			Нуро	theti	cally	in th	e futi	Jre:	
C									
۲ <u>۰۵۰</u>									

)	

)	
L	
tc.	

)	
L	
tc.	

)	
L	
tc.	

Ways to find boundaries of computation

! Thermodynamics Solid Number Ruanzum NOW Composers 1000 00 Circuit depth (time)

Ways to find boundaries of computation

Look for rigorous bounds by using complexity theory etc. (Fundamental results expressed as theorems)

! Thermodynamics S MACH. Quantum Loon parets 10 NOW 1000 00 Circuit depth (time)

Ways to find boundaries of computation

Look for rigorous bounds by using complexity theory etc. (Fundamental results expressed as theorems)

Look for different examples of difficult yet solvable problems to push this boundary (More easily accessible results, yet not so strict)

! Thermodynamics SG Quantum Loon proters NOW 1000 00 Circuit depth (time)

Complexity of quantum dynamics

Solving quantum dynamics is, in general, exponentially growing dimensionality of the

	dyl	nan	1IC:	5			
ve ne	ery di [.] Hilbe	fficult ert sp	due ace	to			

Solving quantum dynamics is, in general, exponentially growing dimensionality of the

	dyl	nan	1IC:	5			
ve ne	ery di [.] Hilbe	fficult ert sp	due ace	to			

Solving quantum dynamics is, in general, exponentially growing dimensionality of th

We want to find:

Time evolution of some observable $\langle O \rangle (t)$

	dyı							
	ery di Hilbe			to				
t) f	or a s	speci	fic ini [.]	tial st	ate	$\Psi_0 \rangle$		

Solving quantum dynamics is, in general, exponentially growing dimensionality of th

We want to find:

Time evolution of some observable $\langle O \rangle (t)$

The evolution can be defined as:

	dyı							
	ery di Hilbe			to				
t) f	or a s	speci	fic ini [.]	tial st	ate	$\Psi_0 \rangle$		

Complexity of quantum dynamics

Solving quantum dynamics is, in general, very difficult due to exponentially growing dimensionality of the Hilbert space

We want to find:

Time evolution of some observable $\langle O \rangle(t)$ for a specific initial state $|\Psi_0\rangle$

The evolution can be defined as:

Some unitary matrix U, which is given for example as quantum circuit

Solving quantum dynamics is, in general, exponentially growing dimensionality of the

We want to find:

Time evolution of some observable $\langle O \rangle (t)$

The evolution can be defined as:

Some unitary matrix U, which is given for

Evolution of some Hamiltonian H(t), in ge

			•					
1	dyı	nan	1IC:	5				
	ery di Hilbe			to				
<i>t</i>) f	or a s	speci	fic ini [.]	tial st	ate	$\Psi_0 \rangle$		
r ež	xamp	ole as	quar	ntum	circui	t		
ene	eral ti	me-d	epen	dent				

Complexity of quantum dynamics

Solving quantum dynamics is, in general, very difficult due to exponentially growing dimensionality of the Hilbert space

We want to find:

Time evolution of some observable $\langle O \rangle(t)$ for a specific initial state $|\Psi_0\rangle$

The evolution can be defined as:

Some unitary matrix U, which is given for example as quantum circuit

Evolution of some Hamiltonian H(t), in general time-dependent

Solving quantum dynamics is, in general, exponentially growing dimensionality of the theorem of the second second

We want to find:

Time evolution of some observable $\langle O \rangle (t)$

The evolution can be defined as:

Some unitary matrix U, which is given for

Evolution of some Hamiltonian H(t), in ge

Evolution of dissipative systems $\frac{d}{dt}O(t) =$

We want to know how much memory a

			•					
1	dył	nan	nics	5				
	-	fficult ert sp	due ace	to				
<i>t</i>) f	oras	speci	fic ini	tial st	ate	$\Psi_0\rangle$		
r ež	xamp	ole as	quar	ntum	circui	ť		
ene	eral ti	me-d	epen	dent				
	<i>i</i> [<i>H</i> , 0	O(t)]	$+ \mathcal{D}$	$\delta^{\dagger}O(t$	·)			
			vill co					
				JL U J				

Operator growth

Let us first consider evolution of a closed

l Sy	/stem	ı in H	eisen	berg	pictu	re:		

Operator growth

Let us first consider evolution of a closed

 $\frac{d}{dt}O(t) = i[H, O(t)]$

Initial conditions: $O(0) = O_0$

O_0 – local operator

l Sy	/stem	ı in H	eisen	berg	pictu	re:		

Operator growth

Let us first consider evolution of a closed system in Heisenberg picture:

 $\frac{d}{dt}O(t) = i[H, O(t)]$

Initial conditions: $O(0) = O_0$

O_0 – local operator

\mathbf{D}	
n as	5.
]]]	5.
	5.
	5.

Initial conditions: $O(0) = O_0$

Universal Operator Growth Hypothesis

Parker, Daniel E., Xiangyu Cao, Alexander Avdoshkin, Thomas Scaffidi, and Ehud Altman. "A universal operator growth hypothesis." Physical Review X 9, no. 4 (2019): 041017.

Operator growth in the

Pauli string is product of Pauli operators of

e	ba	ISis	of	: Pc	uli	st	rin	gs	
on	diffe	rent s	sites:						

Operator growth in the

Pauli string is product of Pauli operators o

Consider *L* qubits

e	ba	ISis	of	: Pc	uli	st	rin	gs	
on	diffe	rent s	sites:						

Consider *L* qubits

Pauli string is product of Pauli operators on different sites:

Consider *L* qubits

For example:

Pauli string is product of Pauli operators on different sites:

Consider *L* qubits

For example:

 Z_n , $X_1I_2Y_3$, $X_1Z_2...Z_{L-1}Y_L$ – Pauli strings

$X_1 + Y_1$ — Not a Pauli string

Pauli string is product of Pauli operators on different sites:

Consider *L* qubits

For example:

 Z_n , $X_1I_2Y_3$, $X_1Z_2...Z_{I-1}Y_I$ – Pauli strings

 $X_1 + Y_1$ — Not a Pauli string

Pauli strings form orthogonal basis in the 4^{L} dimensional operator space

Clifford Circuit consists of Clifford gates

Clifford Circuit consists of Clifford gates

Each Clifford gate maps Pauli string to another Pauli string

Clifford Circuit consists of Clifford gates

Each Clifford gate maps Pauli string to another Pauli string

 $U_{CI}P = P'$

Clifford Circuit consists of Clifford gates

Each Clifford gate maps Pauli string to another Pauli string

Consider randomly generated

Clifford circuit $O_0 = Z_1$ and L = 4

b

Clifford Circuit consists of Clifford gates

Each Clifford gate maps Pauli string to another Pauli string

Consider randomly generated Clifford circuit $O_0 = Z_1$ and L = 4

Clifford Circuit consists of Clifford gates

Each Clifford gate maps Pauli string to another Pauli string

Consider randomly generated

Clifford circuit $O_0 = Z_1$ and L = 4

Clifford Circuit consists of Clifford gates

Each Clifford gate maps Pauli string to another Pauli string

Consider Clifford c $\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & &$

1 / 34 44

Clifford Circuit consists of Clifford gates

Each Clifford gate maps Pauli string to another Pauli string

Consider Clifford c

 $20 \cdot 12 + 2 \cdot 6 + 1 + 1 = 4^4$

 $\begin{array}{c} & & X_{4} & Y_{3} & Y_{4} & X_{3} \\ & & Z_{2} X_{3} & Z_{1} X_{4} \\ & & Y_{1} Y_{4} & Y_{2} Y_{3} \\ & & Y_{2} Z_{1} & Z_{2} \end{array}$

Operator growth in case of Universal circuits Now let us add universality enabling gates

Now let us add universality enabling gates

Clifford gates + T-gate $T = e^{iZ\pi/8}$ are universal (any unitary can be made)

Now let us add universality enabling gates

Clifford gates + T-gate $T = e^{iZ\pi/8}$ are universal (any unitary can be made)

Now let us add universality enabling gates

Clifford gates + T-gate $T = e^{iZ\pi/8}$ are universal (any unitary can be made)

Randomly generated circuit

$$O_0 = X_3$$
 and $L = 4$

Now let us add universality enabling gates

Clifford gates + T-gate $T = e^{iZ\pi/8}$ are universal (any unitary can be made)

Randomly generated circuit

 $O_0 = X_3$ and L = 4

Evolution occurs inside the

entire operator space except for $I = I_1 \dots I_I$

Operator growth in case of Matchgate circuits

Operator growth in case of Matchgate circuits

Is there anything in between simple Clifford evolution and universal evolution?

Operator growth in case of Matchgate circuits

Is there anything in between simple Clifford evolution and universal evolution?

Yes! In case of Matchgate circuits operators $O_0 = Z_n$

always live in the space with dimensionality $2L^2 - L$

gro

Is there anything in between simple Clifford evolution and universal evolution?

Yes! In case of Matchgate circuits operators $O_0 = Z_n$ always live in the space with dimensionality $2L^2 - L$

gate circuits

	-

gro

Is there anything in between simple Clifford evolution and universal evolution?

Yes! In case of Matchgate circuits operators $O_0 = Z_n$ always live in the space with dimensionality $2L^2 - L$

gate circuits

	-

gro

Is there anything in between simple Clifford evolution and universal evolution?

Yes! In case of Matchgate circuits operators $O_0 = Z_n$ always live in the space with dimensionality $2L^2 - L$

Matchgate circuits are equivalent to free-fermionic spin chains

gate circuits

	-

Who is matchgate?

Who is matchgate?

 J_i^{α} , h_i^{z} are, in general, time dependent coefficients

Classical simulability of matchgates (PI-SO)

Classical simulability of matchgates (PI-SO) Dynamics of such Hamiltonians: $Y_{i+1} + J_i^{xy}(t)X_iY_{i+1} + J_i^{yx}(t)Y_iX_{i+1} + h_i^z(t)Z_i$

		I,					
	H =	$\sum_{i=1}^{n}$	$J_i^{xx}(t)$	$X_i X_i$ -	⊢1 + .	$J_i^{yy}(t)$	Y_i
		<i>i</i> =1					

Dynamics of such Hamiltonians:

			$\iota - 1$					
As	well	as ci	rcuits	com	pose	d of <mark>r</mark>	neares	st-r

$H = \sum_{i} J_{i}^{xx}(t) X_{i}X_{i+1} + J_{i}^{yy}(t) Y_{i}Y_{i+1} + J_{i}^{xy}(t) X_{i}Y_{i+1} + J_{i}^{yx}(t) Y_{i}X_{i+1} + h_{i}^{z}(t)Z_{i}$

neighbour matchgates is exactly solvable whe

en:	

Dynamics of such Hamiltonians:

i=1

1. All interactions are nearest-neighbour

$H = \sum_{i} J_{i}^{xx}(t) X_{i}X_{i+1} + J_{i}^{yy}(t) Y_{i}Y_{i+1} + J_{i}^{xy}(t) X_{i}Y_{i+1} + J_{i}^{yx}(t) Y_{i}X_{i+1} + h_{i}^{z}(t)Z_{i}$

are n	eares	st-neig	ghbo	ur					

en:	

Dynamics of such Hamiltonians:

i=1

1. All interactions are nearest-neighbour

2. Initial state $|\Psi_0\rangle$ is a product state

$H = \sum_{i} J_{i}^{xx}(t) X_{i}X_{i+1} + J_{i}^{yy}(t) Y_{i}Y_{i+1} + J_{i}^{xy}(t) X_{i}Y_{i+1} + J_{i}^{yx}(t) Y_{i}X_{i+1} + h_{i}^{z}(t)Z_{i}$

	are n	eares	st-neig	ghbo	ur					
(\rangle is a	a proc	duct s	state						

en:	

Dynamics of such Hamiltonians:

i=1

- 1. All interactions are nearest-neighbour
- 2. Initial state $|\Psi_0\rangle$ is a product state
- 3. The calculated outcome is measurement of a single qubit in computational basis $\langle Z_i \rangle_{out}$

$H = \sum_{i} J_{i}^{xx}(t) X_{i}X_{i+1} + J_{i}^{yy}(t) Y_{i}Y_{i+1} + J_{i}^{xy}(t) X_{i}Y_{i+1} + J_{i}^{yx}(t) Y_{i}X_{i+1} + h_{i}^{z}(t)Z_{i}$

en:	

Dynamics of such Hamiltonians:

i=1

- 1. All interactions are nearest-neighbour
- 2. Initial state $|\Psi_0\rangle$ is a product state
- 3. The calculated outcome is measurement of a single qubit in computational basis $\langle Z_i \rangle_{out}$

thirty-third annual ACM symposium on Theory of computing. 2001. of the Royal Society A: Mathematical, Physical and Engineering Sciences 464.2100 (2008): 3089-3106.

$H = \sum_{i} J_{i}^{xx}(t) X_{i}X_{i+1} + J_{i}^{yy}(t) Y_{i}Y_{i+1} + J_{i}^{xy}(t) X_{i}Y_{i+1} + J_{i}^{yx}(t) Y_{i}X_{i+1} + h_{i}^{z}(t)Z_{i}$

- Valiant, Leslie G. "Quantum computers that can be simulated classically in polynomial time." Proceedings of the
- Jozsa, Richard, and Akimasa Miyake. "Matchgates and classical simulation of quantum circuits." Proceedings

en:	
е	

Dynamics of such Hamiltonians:

i=1

- 1. All interactions are nearest-neighbour
- 2. Initial state $|\Psi_0\rangle$ is a product state
- Not even simulated! 3. The calculated outcome is measurement of a single qubit in computational basis $\langle Z_i \rangle_{out}$

thirty-third annual ACM symposium on Theory of computing. 2001. of the Royal Society A: Mathematical, Physical and Engineering Sciences 464.2100 (2008): 3089-3106.

$H = \sum_{i} J_{i}^{xx}(t) X_{i}X_{i+1} + J_{i}^{yy}(t) Y_{i}Y_{i+1} + J_{i}^{xy}(t) X_{i}Y_{i+1} + J_{i}^{yx}(t) Y_{i}X_{i+1} + h_{i}^{z}(t)Z_{i}$

- Valiant, Leslie G. "Quantum computers that can be simulated classically in polynomial time." Proceedings of the
- Jozsa, Richard, and Akimasa Miyake. "Matchgates and classical simulation of quantum circuits." Proceedings

en:	
е	

Now let us consider generic quantum circuit with dissipation:

Now let us consider generic quantum circuit with dissipation:

Now let us consider generic quantum circuit with dissipation:

Dissipation can be described by GKSL equation:

Now let us consider generic quantum circuit with dissipation:

Dissipation can be described by GKSL equation:

 $\frac{a}{dt}O(t) = i[H, O(t)] + \mathcal{D}^{\dagger}O(t)$

 $\mathcal{D}^{\dagger}O(t) \equiv \gamma \sum_{i} \left(l_{j}^{\dagger}Ol_{j} - \frac{1}{2} \{ l_{j}^{\dagger}l_{j}, O \} \right)$

Now let us consider generic quantum circuit with dissipation:

Dissipation can be described by GKSL equation:

 $\frac{a}{dt}O(t) = i[H, O(t)] + \mathcal{D}^{\dagger}O(t)$

 $l_i^{\alpha} = X_i, Y_i, Z_i$

 $\mathcal{D}^{\dagger}O(t) \equiv \gamma \sum_{i} \left(l_{j}^{\dagger}Ol_{j} - \frac{1}{2} \{ l_{j}^{\dagger}l_{j}, O \} \right)$

Lindblad operators are usually chosen as:

Now let us consider generic quantum circuit with dissipation:

Dissipation can be described by GKSL equation:

 $\frac{a}{dt}O(t) = i[H, O(t)] + \mathcal{D}^{\dagger}O(t)$

 $\mathcal{D}^{\dagger}O(t) \equiv \gamma \sum_{i} \left(l_{j}^{\dagger}Ol_{j} - \frac{1}{2} \{ l_{j}^{\dagger}l_{j}, O \} \right)$

Lindblad operators are usually chosen as:

When acting on the Pauli string:

 $l_i^{\alpha} = X_i, Y_i, Z_i$

 $\mathscr{D}^{\dagger}B_{n} = e^{-2\gamma q_{n}t}B_{n}$

 q_n is the number of non identical operators in B_n

Now let us consider generic quantum circuit with dissipation:

Dissipation can be described by GKSL equation:

 $\frac{a}{dt}O(t) = i[H, O(t)] + \mathcal{D}^{\dagger}O(t)$

 $\mathcal{D}^{\dagger}O(t) \equiv \gamma \sum_{i} \left(l_{j}^{\dagger}Ol_{j} - \frac{1}{2} \{ l_{j}^{\dagger}l_{j}, O \} \right)$

Lindblad operators are usually chosen as:

When acting on the Pauli string:

 $l_i^{\alpha} = X_i, Y_i, Z_i$

 $\mathscr{D}^{\dagger}B_{n} = e^{-2\gamma q_{n}t}B_{n}$

 q_n is the number of non identical operators in B_n

Significant and insignificant operators

Significant and insignificant operators During evolution many operators gets suppressed

Significant and insignif

During evolution many operators gets sup

Let us introduce the number of significant

fi	Cal	nt	ope	era	tor	5		
	resse							
t o	perat	ors:						

Significant and insignif

During evolution many operators gets sup

Let us introduce the number of significant

 $\mathcal{N}_{\epsilon} = \sum_{j=1}^{4^{N}} T_{\epsilon}(|\lambda_{j}^{(L)}|), \quad T_{\epsilon}(x) = \theta(x - t)$ If amplitude of operator is less than ϵ then it is not counted

fi	60	nt	nnc	ירחי	tor	6		
	Cu		ope	JU		3		
p	resse	d						
to	perat	tors:						
$\epsilon)$								

Significant and insignificant operators

During evolution many operators gets suppressed

Let us introduce the number of significant operators:

 $\mathcal{N}_{e} = \sum_{j=1}^{} T_{e}(|\lambda_{j}^{(L)}|), \quad T_{e}(x) = \theta(x - e)$ If amplitude of operator is less than e then it is not counted

Significant and insignif

During evolution many operators gets sup

Let us introduce the number of significant

 $\mathcal{N}_{\epsilon} = \sum_{j=1}^{4^{N}} T_{\epsilon}(|\lambda_{j}^{(L)}|), \quad T_{\epsilon}(x) = \theta(x - t)$ If amplitude of operator is less than ϵ then it is not counted

fi	60	nt	nnc	ירחי	tor	6		
	Cu		ope	JU		3		
p	resse	d						
to	perat	tors:						
$\epsilon)$								

Significant and insignificant operators

During evolution many operators gets suppressed

Let us introduce the number of significant operators:

 $\mathcal{N}_{\epsilon} = \sum_{j=1}^{} T_{\epsilon}(|\lambda_{j}^{(L)}|), \quad T_{\epsilon}(x) = \theta(x - \epsilon)$ If amplitude of operator is less than ϵ then it is not counted

 $P = \sum$

n=]

Significant and insignif

During evolution many operators gets sup

Let us introduce the number of significant

 $\mathcal{N}_{\epsilon} = \sum_{j=1}^{4^{N}} T_{\epsilon}(|\lambda_{j}^{(L)}|), \quad T_{\epsilon}(x) = \theta(x - t)$ If amplitude of operator is less than ϵ then it is not counted

fi	60	nt	nnc	ירחי	tor	6		
	Cu		ope	JU		3		
p	resse	d						
to	perat	tors:						
$\epsilon)$								

Significant and insignificant operators

During evolution many operators gets suppressed

Let us introduce the number of significant operators:

 $\mathcal{N}_{\epsilon} = \sum_{j=1}^{c} T_{\epsilon}(|\lambda_{j}^{(L)}|), \quad T_{\epsilon}(x) = \theta(x - \epsilon)$ If amplitude of operator is less than ϵ then it is not counted

Significant and insignif

During evolution many operators gets sup

Let us introduce the number of significant

 $\mathcal{N}_{\epsilon} = \sum_{j=1}^{4^{N}} T_{\epsilon}(|\lambda_{j}^{(L)}|), \quad T_{\epsilon}(x) = \theta(x - t)$ If amplitude of operator is less than ϵ then it is not counted

fi	60	nt	nnc	ירחי	tor	6		
	Cu		ope	JU		5		
p	resse	d						
to	perat	tors:						
$\epsilon)$								

Significant and insignificant operators

During evolution many operators gets suppressed

Let us introduce the number of significant operators:

 $\mathcal{N}_{\epsilon} = \sum_{j=1}^{} T_{\epsilon}(|\lambda_{j}^{(L)}|), \quad T_{\epsilon}(x) = \theta(x - \epsilon)$ If amplitude of operator is less than ϵ then it is not counted

Significant and insignificant operators

During evolution many operators gets suppressed

Let us introduce the number of significant operators:

$$\mathcal{N}_{\epsilon} = \sum_{j=1}^{+} T_{\epsilon}(|\lambda_{j}^{(L)}|), \qquad T_{\epsilon}(x) = \theta(x - t_{\epsilon})$$

If amplitude of operator is less than ϵ then it is not counted

 ΛN

$$P = \sum_{n=1}^{4^{L}} \lambda_{n} B_{n}$$

This peak remains suppressed in thermodynamic limit

Truncation algorithm for simulation of observables We developed a numerical algorithm that utilizes the fact **1.0** 0.10 a Algorithm ε=0.01 0.5 $\langle Z_4 \rangle$. 0.0 global -0.5 -0.10 50 100 200 200 150 50 100 150 $\mathbf{0}$ 1.0 0.08 С 0.04 Algorithm $\sqrt{0.5}$ $Z_{4/}$ 0=3 0.00 -0.04 **d** -0.5 10.0=3giobal 100 150 200 50 100 150 200 50 0

that operator evolution is restricted

Schuster, Thomas, and Norman Y. Yao. "Operator grov Review Letters 131, no. 16 (2023): 160402.

ar	۰ch	in	th	is f	iel	d		
					s." Phy			

Schuster, Thomas, and Norman Y. Yao. "Operator growth in open quantum systems." Physical Review Letters 131, no. 16 (2023): 160402.

Yan, Yuxuan, Zhenyu Du, Junjie Chen, and Xiongfeng Ma. "Limitations of Noisy Quantum Devices in Computational and Entangling Power." *arXiv preprint arXiv:2306.02836* (2023).

Schuster, Thomas, and Norman Y. Yao. "Operator growth in open quantum systems." Physical Review Letters 131, no. 16 (2023): 160402.

Yan, Yuxuan, Zhenyu Du, Junjie Chen, and Xiongfeng Ma. "Limitations of Noisy Quantum Devices in Computational and Entangling Power." arXiv preprint arXiv:2306.02836 (2023).

Aharonov, Dorit, Xun Gao, Zeph Landau, Yunchao Liu, and Umesh Vazirani. "A polynomial-time classical algorithm for noisy random circuit sampling." In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, pp. 945-957. 2023.

Schuster, Thomas, and Norman Y. Yao. "Operator growth in open quantum systems." Physical Review Letters 131, no. 16 (2023): 160402.

Yan, Yuxuan, Zhenyu Du, Junjie Chen, and Xiongfeng Ma. "Limitations of Noisy Quantum Devices in Computational and Entangling Power." arXiv preprint arXiv:2306.02836 (2023).

Aharonov, Dorit, Xun Gao, Zeph Landau, Yunchao Liu, and Umesh Vazirani. "A polynomial-time classical algorithm for noisy random circuit sampling." In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, pp. 945-957. 2023.

Pashayan, Hakop, Joel J. Wallman, and Stephen D. Bartlett. "Estimating outcome probabilities of quantum circuits using quasiprobabilities." Physical review letters 115, no. 7 (2015): 070501.

С	onc	lus	sior	۱S														
Ο	oerato	or gro	wth p	provic	les a	unifyi	ng pi	cture	for o	Juanti	um ci	rcuits	s of d	iffere	nt coi	mplex	kity	

Conclusions

Operator growth provides a unifying pictu

There are cases of intermediate complexit matchgate circuits or circuits with weak d

Jre	for o	Juanti	um ci	rcuits	s of d	iffere	nt cor	mple>	kity	
ity	such	as								
dis	sipati	on								

Conclusions

There are cases of intermediate complexity such as matchgate circuits or circuits with weak dissipation

Dissipative quantum dynamics seems to be more easily simulatable than unitary

Operator growth provides a unifying picture for quantum circuits of different complexity

У	

