

Russian Quantum Center

Quantum Computing with QuDits

E.O. Kiktenko,^{1,3} A. S. Nikolaeva,^{1,2,3} A.K. Fedorov^{1,2,3}

In collab: I.V. Zalivako,^{1,2} A.S. Borisenko,^{1,2} I.A. Semerikov,^{1,2} N.N. Kolachevsky^{1,2}

¹Russian Quantum Center ²Lebedev's Physical Institute ³National University of Science and Technology "MISIS"

27.05.2024

Gate-based quantum computing

• Quantum circuit is a sequence of quantum gates

- Multi-qubit gates \rightarrow single particle + two-particle gates
- Two-particle gates introduce more noise then single-particle gates

QuDits – d-level quantum systems

- Physical systems used as qubits usually have more than 2 levels
- Qubit(s) can be embedded in quDit's space

QuDits for qubit circuit implementation

- Simplified multi-qubit gate decomposition
- Decrease in the number of information carries
- Reduction in the number of two-particle gates in the circuit

Trapped ions as quDits

A universal qudit quantum processor with trapped ions

Martin Ringbauer,¹ Michael Meth,¹ Lukas Postler,¹ Roman Stricker,¹ Rainer Blatt,^{1, 2, 3} Philipp Schindler,¹ and Thomas Monz^{1, 3} ¹Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria ²Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Otto-Hittmair-Platz 1, 6020 Innsbruck, Austria ³Alpine Quantum Technologies GmbH, 6020 Innsbruck, Austria

Realizing quantum gates with optically-addressable 171 Yb $^+$ ion qudits

M.A. Aksenov,^{1,2} I.V. Zalivako,^{1,2} I.A. Semerikov,^{1,2} A.S. Borisenko,^{1,2} N.V. Semenin,^{1,2} P.L. Sidorov,^{1,2} A.K. Fedorov,² K.Yu. Khabarova,^{1,2} and N.N. Kolachevsky^{1,2}

¹P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia ²Russian Quantum Center, Skolkovo, Moscow 121205, Russia

Nature Physics 18, 1053-1057 (2022)

Phys. Rev. A 107, 052612 (2023)

Qubit quantum circuits with quDits

- To implement qubit circuit with quDits we need to define how to realize:
 - Single-qubit gates inside qudit
 - Two-qubit gates with qudits
 - Multi-qubit gates with qudits
- Basic gates for physical platform are important!

arXiv:2311.12003

Basic gates for trapped-ion quDits

• Single-qudit gates

$$R^{\alpha,\beta}(\phi,\theta) = \exp\left(-\iota\left[\sigma_x^{\alpha,\beta}\cos\phi + \sigma_y^{\alpha,\beta}\sin\phi\right]\frac{\theta}{2}\right)$$

$$\mathsf{MS}(\chi) = \exp\left(-\iota\left[\sigma_x^{0,1}\otimes\sigma_x^{0,1}\right]\chi\right)$$

d = 3: qubit circuit with qutrits

- Single-qubit gate $R(\phi, \theta) \rightarrow$ Single-qutrit $R^{01}(\phi, \theta)$ in qubit subspace
- Two-qubit gate $MS(\chi) \rightarrow$ Two-qutrit $MS^{0101}(\chi)$ in qubit subspace
- Multi-qubit gate \rightarrow Developed qutrit-based decomposition

qubit + ancillary state

Multi-qubit generalized Toffoli gate

- Used in Grover's search algorithm, factorization problem and in error correction
- From C^{N-1}X other multi-controlled unitaries can be constructed
- N qubits $\rightarrow O(N^2)$ 2-qubit gates
- N qutrits $\rightarrow 2N 3$ 2-qutrit gates (d = 3)

d = 3: Multi-qubit C^{N-1}X gate with ion qutrits

3-qubit Toffoli CCX gate with qutrits (d = 3)

• Experimental fidelity of the computational basis truth table

quBits, "F" ~ 73%

quDits, "F" ~ 82%

6 2q gates

3 2q gates

4-qubit CCCX gate with qutrits (d = 3)

• Experimental fidelity of the computational basis truth table

quBits, "F" ~ 39%

quDits, "F" ~ 72%

5 2q gates

14 2q gates

$$d = 4$$
: ququart \leftrightarrow 2 qubits

 Ququart space → tensor product of the spaces of two qubits

 $\begin{array}{l} |0\rangle_{Q} \leftrightarrow |0\rangle_{q} \otimes |0\rangle_{q'} \\ |1\rangle_{Q} \leftrightarrow |0\rangle_{q} \otimes |1\rangle_{q'} \\ |2\rangle_{Q} \leftrightarrow |1\rangle_{q} \otimes |0\rangle_{q'} \\ |3\rangle_{Q} \leftrightarrow |1\rangle_{q} \otimes |1\rangle_{q'} \end{array}$

• Single- and two-qubit gates are defined by this level correspondence

d = 4: Embedding 2 qubits in 1 ququart (d = 4)

• Single-qubit gate \rightarrow 2 single-ququart gates

- Two-qubit gate \rightarrow
 - Single-ququart
 - Two-ququart*

2-qubit gate between qubits in different ququarts

• $MS(\pi) \sim CZ$ between two qubits embedded in different ququarts

Template decomposition of multi-qubit gates with ququarts (d = 4)

• CCCZ decompositions with 4 qubits — 14 CZ gates

• CCCZ decompositions with with 2 ququarts — 6 $MS(\pi)$ gates

arXiv:2109.13223 Phys. Rev. A 109, 022615 (2024)

High-dimensional ion quDits

- Improved multi-qubit gate decompositions for *d* = 5, 6, 7
- Gate set for qubits in quocts
 (d = 8):
 - Single-qubit rotations
 - 4-qubit gate in different quocts with *MS* gate
 - 2-qubit gate in different quocts with 4 *MS* gates

TABLE I. Properties of $C^{N-1}X$ gate decompositions for *N* qubits embedded in *N*/2 qudits (*N* is even).

Qudit dimension	Number of $XX^{ijk\ell}(\chi)$ gates	Depth
d = 5	12N - 18	$\mathcal{O}(N)$
d = 6	N-3	$\mathcal{O}(N)$
d = 7	N-3	$\mathcal{O}(\log N)$

Phys. Rev. A 109, 022615 (2024)

Conclusion

- Multi-level structure of quantum systems, including ions, can be used as an additional resource for quantum computing
- When realizing qubit circuits with qudits, reduction in the number of twoparticle gates can be achieved
- Single-qubit + Two-qubit + Multi-qubit gates with qudits with d = 3,...,8 → arbitrary qubit circuits with trapped-ion qudits
- Improvement in CCX and CCCX gate realization with trapped-ion qutrits was demonstrated
- Simplifying multiqubit gate realization with iSWAP native operation is also possible: see Phys. Rev. A 105, 032621 (2022)
- The review on qudit-based decompositions: arXiv:2311.12003

Thank you for your attention!

e.kiktenko@rqc.ru

CCZ and CCCZ qubit-based decomposition

We compare with these qubit-based decomposition (6 and 14 two-qubit gates)

Grover's algorithm with qudits: trapped-ions

(c)

Figure 5. Circuits of Grover's algorithm implementation. In (a) and (b) hardware-agnostic circuits for searching "11" and "111" hidden strings with 2 + 1 and 3 + 1 qubits are presented correspondingly. Empty circles correspond to controls on state $|0\rangle$. In (c) circuit from (a) is transpiled to the single-qutrit and two-qutrit ion gates. Multiqubit decomposition from Fig. 1 is used. The circuit depicted in (d) corresponds to the ququint-based realization of circuit (b). Straightforward qubit-to-ququint mapping is used: the first (second) qubit pairs are embedded in the first (second) ququint. The highest levels of ququints are used to simplify the implementation of multi-qubit gates, as presented in Fig. 3 (a,b). Here, $\theta_1 := 2 \arcsin(3^{-1/2}), \theta_2 := \pi/2$.

Ion qudit processor parameters

- 10 ions
- d = 4
- 1Q: 99.95%
- 2Q: 92-95%
- 10 ions
- All-to-all coupling map

Readout