Experience in Tuning the Magnetic Structure of Circular Accelerators at BINP

R. Z. Mamutov, G. N. Baranov, V. V. Balakin, F. A. Emanov, D. A. Lipovyy, P. A. Piminov, S. V. Sinyatkin

Budker Institute of Nuclear Physics

Sarantsev seminar, September 2024

Table of Contents

1 Overview of the accelerators at BINP

2 Instrumentation and techniques

Overview of the accelerators at BINP

Two colliders operation

Instrumentation and techniques

Observables:

- Orbit responses to dipole correctors
- Orbit responses to quadrupole correctors
- Dispersion responses to skew-quadrupole correctors
- Turn-by-Turn orbit and tunes
- Orbit and Dispersion

$$\frac{\Delta r_i}{\Delta \theta_j} = \frac{\sqrt{\beta_i \beta_j}}{2 \sin \pi \nu} \cos \left(|\phi_i - \phi_j| - \pi \nu \right) - \frac{\eta_i \eta_j}{\alpha_c L}$$
(1)
$$M = \begin{pmatrix} M_{xx} & M_{xy} \\ M_{yx} & M_{yy} \end{pmatrix}$$
(2)

Mamutov et al. (BINP)

Instrumentation and techniques

Accelerator control via:

EPICS (VEPP-4) CXv4 (VEPP-5)

Preparation for the experiment:

Correctors cycling procedure Beam current threshold

Figure: Software interface

Figure: Response matrix vs Intensity

Figure: Correctors cycling procedure

Mamutov et al. (BINP)

VEPP-5: Main Parameters

Figure: Damping ring layout

Table: Main Parameters

Max. Energy	510 MeV
Circumference	27.4 m
Qx/Qy	4.63/2.75
RF frequency	11.94 MHz
Design beam current	30 mA
Damping times, h/v/l	$11/18/12 \mathrm{ms}$
Hor./vert. emittance	$2.3/0.5$ \cdot 10–6 rad \cdot cm

16 BPMs

- 6 power supplies for quadrupole families
- 28 quadrupole correction windings
- 36 dipole correction windings

Mamutov et al. (BINP)

VEPP-5: Damping Ring Optics

Figure: Optical functions for two structures

With the help of 6 power supplies:

Figure: Tune working points for two structures

8 / 26

э

VEPP-5: Optics Correction

With the help of 28 quadrupole correction windings:

Figure: Optics functions before (left) and after (right) correction

With the help of 32 dipole correction windings: $\Delta CorrectorKicks = M^{-1} \cdot \Delta Orbit$

VEPP-5: Geodetic displacements

Figure: Vertical geodetic displacements of quads (left) and the resulting vertical orbit (right)

Remarks

- New optics with a new working point
- Corrected orbit to reduce beam losses
- Improved injection, storing and stability
- Modern and easy to exploit machine (control and magnetic systems)

Plans

- More iterations to fine-tune beta beatings and orbit
- Future beam-based alignment to realign quads and correct the orbit
- Unified optics for both electrons and positrons
- Transportation channels to colliders tunning

VEPP-3

Uses:

- Booster for VEPP-4M
- For Deuteron experiment
- For SR research

Figure: VEPP-4 acceleratring-storage complex layout

Mamutov et al. (BINP)

э

VEPP-3: Main Parameters

Table: Main Parameters

Energy range	0.4-2 GeV
Circumference	74.4 m
Compaction factor	0.071
Qx/Qy	5.17/5.22
RF frequency	8.06/72.54 MHz
Revolution frequency	4.03 MHz
Damping decrements, h/v/l	0.93/1/2.07
Beam lifetime	0.5-6 hours

- 19 BPMs
- 4 power supplies for quadrupole families
- 53 dipole correction windings

VEPP-3: Baseline Optics

Figure: Optical functions and working point

VEPP-3: Matrix Analysis

Figure: Heatmap of measured response matrix

inamiticov ce al. (Dini

Sarantsev seminar 2024 16 / 26

VEPP-3: Optics Correction

Figure: Optical functions and errors distribution

Remarks

- Optics measurements and the calibrated model for the first time at VEPP-3
- Amount of knobs is crucial for optics correction
- Boosters usually lack control knobs
- Calibrated model but not corrected optics
- It is optimal to use a tune-to-current knob in this case

Plans

- Orbit bumps in non-linear elements to create necessary focusing
- Perhaps it's worth finding a new model structure to start with

VEPP-4M

Uses:

- For KEDR experiments
- For SR research
- For ROKK-1M experiments

Figure: VEPP-4 complex layout

Table: Main Parameters

Energy	1.9-6 GeV
Circumference	366.075 m
Rev. frequency	818.924 KHz
RF frequency	180 MHz
RF harmonic	222
Betatron tunes	8.54/7.58
Synchrotron tune	0.006-0.03
Comp. factor	$1.68 \cdot 10^{-2}$
Hor. emit.	24.6 nm · rad
Energy spread	$3.7 \cdot 10^{-4}$
Bunch current	6 mA

VEPP-4M: Main Parameters

- main field **H** powered by 1 power supply
- gradient **F7**. 1 power supply
- gradient **D7**. 1 power supply
- sextupole corrections: FS, DS. 4 power supplies
- correction of the horizontal orbit X.
 1 power supply per element
- correction of the vertical orbit Y and betatron coupling SQ. 2 power supplies per element

Figure: Periodicity element at the arcs • 54 BPMs

- 26 quadrupole correction windings
- 6 quads have individual transistor shunts
- 105 dipole correction windings

VEPP-4M: Optics for Experiments 4.7 GeV

Figure: Optical functions and working point

VEPP-4M: Quadrupole Calibration

$$\Delta k = C \Delta I. \tag{6}$$

< □ > < 凸

Quadrupole effectiveness

- Measure two matrices: M(I), $M(I + \Delta I)$
- Fit a model to M(I)
- With the model, vary lens' Δk to fit $M(I + \Delta I)$

Skew-quadrupole effectiveness

- Measure one matrix: M
- Fit a model to M
- Measure disperson responses : $D_y/\Delta I$
- With the model, vary lens' Δk to fit $D_y/\Delta l$

VEPP-4M: Solenoid Compensation Checking

From the model calibration, error $\Delta I_{sol}/I_{sol} < 0.5\%$

$$M = \left(\Delta D_{y} / \Delta I\right) \tag{7}$$

Figure: Singlular values of dispersion responses to skew-quads and solenoid matrix

Mamutov et al. (BINP)

VEPP-4M: BetaY* and Dispersion Minimization

 β_v^* : 6 cm \rightarrow 4 cm

Mamutov et al. (BINP)

Sarantsev seminar 2024

Remarks

- Amount of knobs is crucial for optics correction
- Don't limit yourself to one model, but try to find another one
- Hard to use non-isolated knobs that change not only focusing properties
- The trend in accelerator design is a higher structure fill-factor than it was for VEPP-4M: combined function magnets + correction windings

Plans

- To validate the increase in luminosity as the season begins
- Orbit bumps in non-linear elements to create necessary focusing

Thank you for your attention!