Приложение 3.

Форма открытия (продления) Проекта

УТВЕРЖДАЮ

Директор Института

" " 202 г.

НАУЧНО-ТЕХНИЧЕСКОЕ ОБОСНОВАНИЕ ПРОДЛЕНИЯ ПРОЕКТА ПО НАПРАВЛЕНИЮ ИССЛЕДОВАНИЙ В ПРОБЛЕМНО-ТЕМАТИЧЕСКОМ ПЛАНЕ ОИЯИ

1. Общие сведения о проекте

1.1. Шифр темы 02-1-1087-2009 Исследования по физике релятивистских тяжелых и легких ионов на ускорительных комплексах Нуклотрон-М/NICA ОИЯИ и SPS ЦЕРН

1.2. Шифр проекта

1.3. Лаборатория Лаборатория физики высоких энергий им. В.И. Векслера и А.М. Балдина

1.4. Научное направление Физика элементарных частиц и релятивистская ядерная физика

1.5. Наименование проекта: Исследование рождения адронов в адрон-ядерных и ядро-ядерных взаимодействиях на ускорителе SPS в ЦЕРН (NA61/SHINE - SPS Heavy Ion and Neutrino Experiment)

1.6. Руководитель проекта Малахов А.И.

1.7. Заместители руководителя проекта Дмитриев А.В., Зайцев А.А.

2. Научное обоснование и организационная структура

2.1. Аннотация

Настоящий проект представляет собой предложение о продлении исследований по изучению свойств адронной и ядерной фрагментации во взаимодействиях с пучками адронов и ядер в рамках экспериментальной программы NA61/SHINE на SPS в ЦЕРН. Программа эксперимента включает в себя задачи по поиску гипотетической критической точки в фазовой диаграмме ядерной материи, изучению свойств начала деконфайнмента и образования отрытого чарма. Для решения этих задач ведется сканирование измерений спектров частиц и флуктуаций протон-протонных, протон-ядерных и ядро-ядерных взаимодействий в зависимости от энергии столкновения и размера системы. Это дает уникальные возможности для исследования критических свойств плотной горячей адронной материи, образующейся в процессе столкновения.

Ожидаемые результаты по программе эксперимента NA61/SHINE включены в семилетний план развития ОИЯИ на 2024-2030 года (<u>https://www.jinr.ru/wp-content/uploads/JINR Docs/JINR Seven-year plan 2024-2030 rus.pdf ctp. 25 п.4</u>).

Продолжается анализ данных по следующим направлениям:

- ✓ образование легких ядер в ядерных взаимодействиях;
- ✓ генерация гиперонов во взаимодействиях Be + Be, Ar + Sc, Xe + La, Pb + Pb;
- ✓ рождение антивещества в ядро-ядерных взаимодействиях.
- ✓ рождение очарованных частиц в столкновениях релятивистских тяжелых ионов.

Ведутся совместные работы по моделированию для проектов NICA и NA61, опираясь на экспериментальные данные, полученные в эксперименте NA61.

Участники группы ОИЯИ в рамках коллаборации выполняют обязательства как по физическому анализу данных и моделированию, так и в реализации программы обновления установки NA61/SHINE, а именно по разработке и установке новой двухплечевой времяпролетной системы. Установленное левое плечо ТоF было полностью интегрировано в установку и успешно отработало во время набора данных в 2023 году. Правое плечо ToF предполагается установить в 2024 году, что позволит перекрыть весь аксептанс установки.

Уникальный опыт работы в международной коллаборации позволит ее участникам применить полученные навыки в реализации мегапроектов NICA в ОИЯИ.

Следует отметить, что результатами работы участников группы ОИЯИ в коллаборации являются периодические публикации статей в крупных рецензируемых журналах, а также защиты кандидатских и докторских диссертаций. В настоящее время ведется подготовка к защите нескольких кандидатских и одной докторской диссертаций.

2.2. Научное обоснование

2.2.1 Введение

Эксперимент NA61/SHINE в CERN SPS получил свое название (SPS Heavy Ion and Neutrino Experiment) благодаря двойной экспериментальной программе. С одной стороны, проводятся точные измерения спектров, необходимые для экспериментов с космическими лучами и нейтрино. С другой стороны, исследуется начало деконфайнмента (поиск возникновения структур «horn», «kink», «step» и «dale»), обнаруженного предыдущим экспериментом NA49 в CERN SPS [1] и ведется систематический поиск гипотетической критической точки второго порядка на фазовой диаграмме КХД (поиск немонотонной зависимости различных корреляционных и флуктуационных наблюдаемых от энергии столкновения и размера сталкивающихся ядер). Программа сильных взаимодействий в эксперименте NA61/SHINE основана на сканировании пучками легких и промежуточных ядер (p+p, p+Pb, Be+Be, Ar+Sc, Xe+La, Pb+Pb) с энергиями в диапазоне 13А - 158А ГэВ. Эти исследования мотивированы наблюдаемыми в эксперименте NA49 быстрыми изменениями в свойствах образования адронов в центральных столкновениях Pb+Pb при энергии около 30А ГэВ/с [2, 3]. Полученные результаты были интерпретированы как начало деконфаймента; они были подтверждены результатами экспериментов на RHIC [4] и LHC (см. [5]).

Цели программы сильного взаимодействия NA61/SHINE достигаются экспериментально путем двумерного сканирования энергии столкновения и размера сталкивающихся ядер. Это позволяет систематически исследовать фазовую диаграмму сильно взаимодействующей материи [1]. В частности, анализ существующих данных в рамках статистических моделей позволяет предположить, что за счет увеличения энергии столкновения увеличивается температура и снижается барионный химический потенциал файербола сильновзаимодействующей материи при кинетическом замораживании [6], тогда как за счет увеличения ядерной массы сталкивающихся ядер температура снижается [6–9] (Рис. 2).

В рамках этой программы NA61/SHINE коллаборацией были набраны данные при столкновениях p+p, Be+Be, Ar+Sc, Xe+La и Pb+Pb в течение 2009-2018 гг. Дальнейшие измерения на высокой статистике столкновений Pb+Pb с помощью модернизированного детектора начались в 2022 и 2023 гг. [10].

Стоит выделить основные направления деятельности сотрудников ОИЯИ в реализации проекта NA61/SHINE:

1. Изучение образования легких ядер. Это важно по нескольким причинам:

Прежде всего, механизм образования кластеров в ядро-ядерных столкновениях недостаточно изучен и требует дальнейших исследований. С другой стороны, например, дейтроны и тритоны не являются элементарными адронными частицами и из-за их малой энергии связи по сравнению

с окружающей температурой системы, весьма вероятно, что они не выживут при повторных столкновениях. Таким образом, вероятно, что наблюдаемые дейтроны и тритоны, а также значительная часть связанных состояний нескольких нуклонов, зарегистрированных вблизи центральной области быстрот, образуются на поздней стадии реакции. Следовательно, наблюдаемые в эксперименте легкие ядра, образовавшиеся на поздних этапах эволюции реакции, могут предоставить информацию о пространственно-временной структуре поздней стадии столкновения.

2. Изучение образования гиперонов и гиперядер во взаимодействиях Ar + Sc, Xe + La, Pb + Pb. Релятивистские столкновения тяжелых ионов дают уникальную возможность создавать и исследовать горячую и плотную материю в лабораторных условиях. На начальном этапе реакции формируется КГП, а на заключительном этапе – идет процесс адронизации и образования кластеров. Захват рожденных гиперонов кластерами нуклонов приводит к образованию гиперядер, что является очень редким процессом при пороговой энергии для рождения странности. Гиперядра являются уникальными объектами для углубления наших знаний о взаимодействиях странных частиц с ядрами в многочастичной среде и в контролируемых условиях. Это, в свою очередь, необходимо для получения более общего и самосогласованного описания барион-барионных взаимодействий.

3. Изучение образования антивещества в релятивистских ядерных взаимодействиях.

4. Анализ экспериментальных данных с использованием дубненского подхода. Используется развитие подхода к исследованию релятивистских ядерных взаимодействий в пространстве четырехмерных скоростей, предложенного академиком А.М. Балдиным.

5. Измерение среднего числа пар очарованных кварк-антикварков (сс), образующихся в полном фазовом пространстве взаимодействующих тяжелых ионов. Особенность рождения очаровательных частиц при столкновении тяжелых ионов может быть признаком образования КГП, в частности, подавление выхода J/ψ-мезонов. Таких данных пока нет, и в рамках эксперимента NA61/SHINE планируется осуществить такой анализ.

6. Разработка времяпролетного детектора на основе многозазорных резистивных плоских камер (MRPC) с высоким временным разрешением. Ведется совместная разработка детекторов для NA61 и NICA. Ядерные пучки ЦЕРН используются для тестирования и отладки детекторов.

7. Лаборатория ядерных проблем участвует в нейтринной программе NA61. Коллаборация NA61/SHINE имеет программу измерений образования адронов для экспериментов по осцилляциям нейтрино с длинной базой в FNAL и J-PARC. Эти измерения расширяют знания о потоке нейтрино, создаваемом нейтринными пучками ускорителей.

Рис. 1. Схематическое изображение установки NA61/SHINE после проведенной модернизации во время остановки LS2. Светло-зеленым сектором (R-ToF) обозначено место установки правого плеча ToF детектора MRPC.

Рис. 2. Слева: гипотетический рисунок фазовой диаграммы сильно взаимодействующего вещества с критической точкой, изображенный как функция барионного химического потенциала µ и температуры Т. Справа: изображение холма флуктуаций, которые могут наблюдаться в сканировании по импульсу пучка и размеру системы при условии, что параметры «замораживания» близки к критической точке.

2.2.2 Статус исследования.

В период с 2022 по 2024 года коллаборацией NA61/SHINE была накоплена рекордная статистика данных во многом благодаря проведенной модернизации установки. Ниже приведены основные результаты по трем направлениям программы эксперимента за период 2021-2024 гг.: 1. Исследование свойств начала деконфайнмента.

Статистическая модель ранней стадии [11] предполагает фазовый переход первого рода от адронной материи к кварк-глюонной плазме (КГП) в области энергий, начиная с AGS ($\sqrt{s_{NN}} \approx 5$ ГэВ) и до SPS ($\sqrt{s_{NN}} \approx 17$ ГэВ). Одним из предсказанных признаков перехода деконфайнмента является структура "horn", немонотонное изменение отношения выходов K^+/π^+ в зависимости от энергии столкновения, наблюдаемый при $\sqrt{s_{NN}} \approx 8$ ГэВ. Подобная структура наблюдалась в данных эксперимента NA49 в центральных столкновениях Pb+Pb [12]. NA61/SHINE расширяет набор экспериментальных данных столкновениями p+p, Be+Be и Ar+Sc. В последние годы экспериментальная программа была расширена за счет столкновений Pb+Pb, где изучаются образование открытого очарования и коллективные эффекты. В настоящее время ведется анализ данных по взаимодействиям Xe+La и Pb+Pb. Одним из недавних результатов коллаборации связаны с получением инклюзивных рт спектров, распределений по быстроте и средним множественностям π^{\pm} , K^{\pm} , *p* и \bar{p} , рожденных в 0–10% центральных столкновениях Ar+Sc при 13А-150AGeV/с [13]. Представлена энергетическая зависимость отношения одноименно заряженных каонов к пионам, а также по параметру обратного наклона Т во всей фазовой области для наиболее центральных столкновений Ar+Sc при различных начальных энергиях [13]. Компиляция NA61/SHINE и мировых данных представлены на Рис. 3. Как видно, для сталкивающихся систем вплоть до A=45 структура "horn" не проявляется ни в центральной области быстрот (Рис. 3), ни в полном фазовом объеме (Рис. 4). Однако четкое различие между двумя группами данных наблюдается: результаты для p+p и Be+Be столкновений показывают схожие значения и зависимость от энергии столкновения, тогда как данные по Pb+Pb, Au+Au и Ar+Sc столкновениям показывают гораздо более высокие значения отношений K^+/π^+ . Более того, хотя данные Ar+Sc четко отделены от небольших сталкивающихся систем, в его энергетической зависимости не наблюдается структуры "horn", наблюдаемого в реакциях Pb+Pb и Au+Au. Самые последние данные по взаимодействиям Хе+La при 150 А ГэВ/с [14] также приведены на Рис. 3; точки Xe+La близки к результатам Pb+Pb/Au+Au при аналогичной энергии.

На Рисунках 3 и 4 представлена энергетическая зависимость отношения $K^{-/\pi^{-}}$. Хотя число sи \bar{s} -кварков, рождающихся в результате столкновения, одинаково, на их распределение среди странных адронов сильно влияет большая чистая барионная плотность, характерная для ядерноядерных столкновений при энергиях SPS. Поэтому большая часть s-кварков будет распределена в Λ -барионах, тогда как в случае \bar{s} -кварков рождение $\bar{\Lambda}$ сильно подавлено. Таким образом, подавляющее большинство \bar{s} -кварков уносится в результате столкновения K⁺ и K⁰-мезонами, которые, как ожидается, будут рождаться в аналогичных количествах. Следовательно, выходы K⁺ являются более чувствительной мерой содержания странности, чем выходы K⁻. Поэтому для отношения K⁻/ π ⁻ не ожидается характерного максимума, близкого к $\sqrt{s_{NN}} = 8 \Gamma \Im B$, «horn», и все системы, изученные при энергиях SPS, демонстрируют примерно монотонный рост в сторону более высоких энергий столкновения. Можно сделать вывод, что данные, полученные для взаимодействий Ar+Sc, очень напоминают данные Pb+Pb при высоких энергиях столкновений (75 *A*, 150 *A* $\Gamma \Im B/c$), а при низких энергиях (<40 *A* $\Gamma \Im B/c$) они больше похожи на небольшие сталкивающиеся системы.

Рис. 3. Энергетическая зависимость отношения K^{\pm}/π^{\pm} в центральной области быстрот для положительно (слева) и отрицательно (справа) заряженных частиц для центральных Ar+Sc, Be+Be, Pb+Pb и Au+Au столкновениях, а также неупругие p+p взаимодействия [13]. Точка для XeLa при 150 A ГэB/с является предварительной.

Рис. 4. Энергетическая зависимость среднего отношения множественности (К)/(π) положительно (слева) и отрицательно (справа) заряженных частиц для центральных Ar+Sc,

Ве+Ве, Pb+Pb и Au+Au столкновений, а также неупругих p+p взаимодействий [13]. Точка для XeLa при 150 А ГэВ/с является предварительной.

На Рис. 5 показаны спектр отношения K^+/π^+ , рожденных в центральной области быстрот и спектр по параметру обратного наклона *T*, извлеченного из фитирования спектров поперечного импульса рожденных K^+ -мезонов в зависимости от размера сталкивающейся системы (на рисунке $\langle W \rangle$ - количество нуклонов-участников взаимодействия). Все графики демонстрируют схожее, пороговое поведение, которое невозможно объяснить никакими из приведенных моделями. Наблюдаемое быстрое изменение свойств образования адронов, которое начинается при переходе от столкновений Ве+Ве к Ar+Sc при высоких энергиях SPS, указывает на начало создания больших кластеров сильно взаимодействующей материи – файебола (*fireball*).

Рис. 5. Слева: Зависимость отношения K⁺/π⁺ от размера сталкивающейся системы в центральной области быстрот, по данным коллабораций NA61/SHINE в p+p, Be+Be, Ar+Sc и NA49 в Pb+Pb при 150 A (Be+ Be, Ar+Sc) или 158A (p+p, Pb+Pb) ГэB/с по сравнению с динамической и статистической моделями. Справа: параметр обратного наклона T, извлеченный из p_T спектров K⁺ при аналогичной энергии столкновения [5].

2. Поиск гипотетической критической точки на фазовой диаграмме КХД.

Сигналом критической точки может выступать немонотонность зависимости различных флуктуаций и корреляций в измерениях. На рис. 6 показаны энергетические зависимости флуктуаций отрицательно заряженных адронов (h⁻) и суммарного электрического заряда (h⁺ –h⁻), измеренные в p+p, Be+Be и Ar+Sc столкновениях [15]. Сравнение флуктуаций в системах разных размеров возможно с использованием интенсивных величин. Для h⁻ рассматриваются отношения кумулянтов κ_2/κ_1 [h⁻] (масштабированная дисперсия), κ_3/κ_2 [h⁻] (масштабированная асимметрия) и κ_4/κ_2 [h⁻] (масштабированный эксцесс) (эталонное значение 1 определяется распределением Пуассона). В случае чистого электрического заряда первые два соотношения слегка изменяются, чтобы сохранить существующие существенные различия между более тяжелыми и более легкими системами. В случае остаточного электрического заряда масштабированная асимметрия и масштабированный эксцесс предполагают немонотонное поведение в пределах значительных систематических неопределенностей.

Рис. 6. Энергетическая зависимость флуктуаций отрицательно заряженных адронов (верхние 2 рисунка) и остаточному электрическому заряду (нижние два рисунка) в p+p, Be+Be и Ar+Sc столкновениях [15].

Другим возможным инструментом поиска критической точки является интермиттенси анализ. Обычно масштабированные факториальные моменты F_r рассчитываются на основе подсчитанных частиц в ячейках пространства поперечных импульсов. Теория предсказывает [16], если система вымерзает вблизи критической точки, то масштабированные факториальные моменты должны иметь степенную зависимость: $F_r(M) \sim M^{\varphi r}$, где M — число ячеек. Предварительные результаты по $F_2(M)$ протонов в центральной области, измеренные в 0–20% наиболее центральных столкновениях Ar+Sc при 150 A ГэB/c [17] и центральных столкновениях Pb+Pb при 13 A ГэB/с, представлены на Рис. 7. Интермиттенси отрицательно заряженных адронов в центральных столкновениях Pb+Pb при импульсе пучка 30 A ГэB/с до четвертого масштабированного факториального момента также показана на Рис. 7. Измеренные F₂(M) протонов Ar+Sc при 150 A ГэB/с и Pb+Pb при 13 A ГэB/с, а также F₂(M), F₃(M) и F₄(M) отрицательно заряженных адронов в Pb+Pb при 30 A ГэB/с не показывает признаков степенного увеличения с размером ячейки, который мог бы указывать на сигнал критической точки [18,19].

Рис. 7. Анализ интермиттенси протонов из наиболее центральных столкновений Ar + Sc при 150 A ГэВ/с (вверху слева) и 0–10% наиболее центральных столкновений Pb + Pb при 13 A ГэВ/с (вверху справа). Внизу: предварительные результаты анализа интермиттенси отрицательно заряженных адронов из наиболее центральных столкновений Pb + Pb при энергии 30 A ГэВ/с.

Последними результатами, связанными с поиском критической точки, являются симметричные корреляции Lévy HBT для пар пионов с одинаковым зарядом в центральных столкновениях Ar + Sc при импульсе пучка 150 A ГэВ/с, показанные на Puc. 8 [20]. Здесь вместо обычной гауссовой формы источника используется более общее распределение, устойчивое по Lévy. Его параметр α описывает форму источника: при $\alpha = 2$ источник является гауссовым, при $\alpha = 1$ - распределение Коши, а трехмерная модель Изинга со случайным внешним полем предсказывает $\alpha = 0.5\pm0.05$ для критической системы. Из рисунка видно, что нет никаких указаний на критическую точку для центральных столкновений Ar+Sc при максимальной энергии SPS.

Рис. 8. Результаты по симметричным корреляциям Lévy HBT для пар пионов с одинаковым зарядом в центральных столкновениях Ar+Sc при импульсе пучка 150 A ГэB/c. На левом графике показан пример корреляционной функции, а на правом — зависимость параметра формы подобранного источника от поперечной массы пары.

Продолжающиеся исследования по поиску критической точки с помощью интермиттенси протонов обобщены на диаграмме температуры химического замораживания и химического потенциала (Рис. 9) [21]. Анализ интермиттенси для других реакций, зарегистрированных в

программе NA61/SHINE по сильным взаимодействиям проведен в полной мере, и вскоре следует ожидать новых результатов.

Рис. 9. Диаграмма температуры химического замерзания и барионно-химического потенциала. Пунктирная линия указывает параметры в p+p-взаимодействиях, точечная линия — в центральных Pb+Pb-столкновениях. Цветными точками отмечены реакции (Ar+Sc и Pb+Pb) на фазовой диаграмме T-µ_B, для которых проводился поиск критической точки, но свидетельств существования критической точки обнаружено не было.

Новые данные по адронным спектрам в р+р реакциях.

На Рис. 10 представлены одни из последних результатов по быстротным спектрам нейтральных каонов: $K^*(892)^0$ при импульсах пучка 40 и 80 ГэВ/с [22] по сравнению с 158 ГэВ/с [23] и K_S^0 при энергиях $\sqrt{s_{NN}}$ 17.3, 12.3, 8.8 и 7.7 ГэВ [24]. Эти данные, с одной стороны, будут служить ссылкой для будущих данных из более крупных систем, а с другой стороны, послужат входными данными для моделей, которые пытаются описать возникновение странностей при энергиях SPS. Статистически обеспеченные данные p+p-столкновений при энергии 158 ГэВ/с позволили провести более сложные измерения рождения гиперонов $\Xi(1530)^0$ и $\overline{\Xi}(1530)^0$ [25], которые являются единственными такими результатами при энергии SPS. Первые двумерные спектры $\Xi(1530)^0$ и $\overline{\Xi}((1530)^0$ [25] представлены на Рис. 11.

Рис. 10. Спектры быстрот нейтральных каонов, рожденных в р + p-столкновениях: $K^*(892)^0$ при импульсах пучка 40 и 80 ГэВ/с [22] в сравнении с данными для 158 ГэВ/с [23] (слева), K_S^0 при начальных энергиях $\sqrt{s_{NN}}$ 17.3, 12.3, 8.8 и 7.7 ГэВ (справа).

Рис. 11 Спектры быстрот $\Xi(1530)^0$ (синие квадраты) и $\overline{\Xi}(1530)^0$ (красные кружки), образующихся в неупругих p+p взаимодействиях при энергии 158 ГэВ/с.

Было обнаружено неожиданное превышение образования заряженных K[±]-мезонов над нейтральными K⁰ в центральных столкновениях Ar+Sc при энергии $\sqrt{s_{NN}}=11.9$ ГэВ [26]. Экспериментальные данные показывают преобладание образования К-мезонов, содержащих (u, \bar{u}) над мезонами, содержащими (d, \bar{d}) во всем кинематическом диапазоне, доступном для измерения. В центральной области быстрот относительный избыток заряженных мезонов составляет (23.3±5.5)%. Более ранние данные других экспериментов в диапазоне энергий столкновений 5 < $\sqrt{s_{NN}}$ < 200 ГэВ, хотя и с большими погрешностями, согласуются с настоящим результатом (Рис. 12). Происхождение этого неожиданного избытка еще предстоит выяснить.

Рис. 12. Отношение выходов заряженных и нейтральных К-мезонов в ядерно-ядерных столкновениях в зависимости от энергии столкновения. Измерение NA61/SHINE показано красной точкой [26].

Недавно программа сильных взаимодействий эксперимента NA61/SHINE была расширена измерениями по рождению открытого чарма, в основном *D*-мезонов, во взаимодействиях Pb+Pb. Средняя множественность очарованных кварков (cc), рожденных в полном фазовом пространстве в результате столкновений тяжелых ионов, пока не известна, и ее необходимо измерить. Аксептанс детектора NA61/SHINE достаточно велик, чтобы экстраполировать

измерения на полное фазовое пространство с относительно небольшими погрешностями. Эта уникальная особенность делает NA61/SHINE единственным экспериментом, который сможет провести подобные измерения в энергетической области CERN SPS. Для решения задач, связанных с требуемым пространственным разрешением реконструкции первичных и вторичных вершин, установка NA61/SHINE была модернизирована пиксельным вершинным детектором. С помощью данного детектора появится возможность реконструировать распады *D*-мезонов на расстоянии ≈ 1 мм от точки первичного взаимодействия. В период с 2022 по 2023 гг. набрана статистика порядка 180 млн событий взаимодействий Рb+Pb при энергии 150 A ГэB/с. В среднесрочной программе эксперимента планируется увеличить статистику до 500 млн триггерных событий за 7 недель почкового времени в период с 2024 по 2025 гг [27].

3. Недавние результаты в рамках нейтринной программы эксперимента NA61/SHINE

В течение многих лет коллаборация NA61/SHINE реализует программу измерений образования адронов для экспериментов по осцилляциям нейтрино с длинной базой в J-PARC и Фермилабе (FNAL). Эти измерения улучшают знания о потоке нейтрино, образующемся в пучках нейтрино на ускорителях. NA61/SHINE измеряет полные сечения и дифференциальные спектры выходов адронов на тонких мишенях и копии мишени эксперимента T2K. NA61/SHINE также выполняет измерения образования адронов, необходимые для интерпретации данных обширных атмосферных ливней (EAS) при сверхвысоких энергиях, и измеряет сечения образования и фрагментации для понимания данных галактических космических лучей (GCR).

Взаимодействие протонов с энергией 120 ГэВ/с с углеродом представляет особый интерес для научных групп по изучению нейтрино, поскольку оно представляет собой первичное взаимодействие, которое формирует нейтринный пучок в Фермилабе, для обеспечения нейтринной физики экспериментов MINERvA и NOvA. Этот интерес послужил мотивацией для разработки системы Forward TPC (FTPC) на установке NA61/SHINE (см. Рис. 1).

Коллаборацией получены данные о рождении заряженных и нейтральных адронов в p+Cвзаимодействиях с энергией 120 ГэВ/с. Результаты доступны для использования в симуляторах и включены в пакет прогнозирования потока нейтрино PPFX компании Fermilab [28].

Анализ нейтральных адронов был выполнен в 2022 г. и опубликован в 2023 г. Результаты [29] включали в себя измеренные выходы K_S^0 , Λ и $\bar{\Lambda}$, идентифицированных с использованием инвариантных масс и отбора асимметрии импульсов из реконструированных двухчастичных вторичных вершин (Рис. 13). Полученные результаты являются первыми измерениями для этого процесса при такой энергии. Недавно были проведены измерения образования заряженных адронов в событиях p+C взаимодействий с энергией 120 ГэB/с [30]. Данные также будут использоваться в ближайшем будущем для улучшения оценок нейтринных потоков в экспериментах Fermilab.

Рис. 13. Двумерные распределения по множественности рожденных $K_{\rm S}^0$, Λ и $\bar{\Lambda}$.

Получены результаты измерений спектров π^{\pm} , K^{\pm} , *p*, \bar{p} , Λ , $\bar{\Lambda}$ и K_S^0 , образующихся во взаимодействиях отрицательно заряженных пионов с ядрами углерода при импульсах пучка 158 и 350 ГэВ/с [31]. Таким образом, вместе с недавними результатами по рождению ρ^0 , ω и K_0^* -мезонов в π^-+C -взаимодействиях [32] успешно завершены исследования образования адронов для понимания атмосферных ливней, индуцированных космическими лучами сверхвысоких

энергий. Спектры, измеренные с помощью NA61/SHINE, предоставляют уникальный набор справочных данных с беспрецедентной точностью и большим охватом фазового пространства для настройки моделей образования частиц в обширных атмосферных ливнях. В качестве примера спектры рожденных антипротонов показаны на Рис. 14.

Рис. 14. Спектр поперечных импульсов рождённых антипротонов в π⁻+C-взаимодействиях при энергии 158 ГэВ/с в сравнении с модельными предсказаниями.

В 2018 году была продемонстрирована возможность проведения исследований фрагментации. Было получено полное сечение образования ядер В [32] и ¹¹С [34] в реакциях ¹²С+р при энергии 13.5 А ГэВ/с с использованием полиэтиленовой и графитовой мишеней. Совсем недавно были измерены сечения образования изотопов бора (¹¹В и ¹⁰В) [35].

Физики группы ОИЯИ также выполнили оригинальные исследования с использованием подхода к изучению релятивистских ядерных взаимодействий в четырехмерном пространстве скоростей, который ранее был развит академиком А.М. Балдиным. Принципы подобия и автомодельности оказались очень плодотворными при изучении ядерных взаимодействий при высоких энергиях [36, 37]. Ранее [38], модифицированный подход был успешно применен для описания инклюзивных спектров рожденных пионов и канов в центральной области в p+p взаимодействиях. Суть модификации автомодельного подхода состоит во включении кваркглюонной динамики в рождение адронов в нуклон-нуклонном взаимодействии в области быстрот у = 0. Полученные расчеты показали достаточно успешное описание отношений выходов каонов (K^{\pm}) и пионов (π^{\pm}) в широкой области начальных энергий, вплоть до LHC. Стоит отметить, что данный подход чувствителен, особенно в области энергий 8 ГэВ, к массовому числу сталкивающихся ядер (А-зависимость). Недавно было предложено описать имеющееся у коллаборации NA61/SHINE спектры рожденных заряженных пионов и каонов в центральной области быстрот в наиболее центральных столкновениях Ве+Ве. Получено удовлетворительное описание как инклюзивных p_T спектров π^{\pm} и K^{\pm} , так и отношений полного выхода каонов и пионов как функция начальной энергии [39]. Результаты проведенных вычислений представлены на Рис. 15 в сравнении с другими модельными предсказаниями. Получены первые результаты применения дубненского подхода к описанию новых данных коллаборации по образованию заряженных каонов в центральных столкновениях Ar+Sc [40].

Расчеты дубненского подхода BMLZ (Baldin-Malakhov-Lykasov-Zaitsev model) дали удовлетворительные результаты по описанию экспериментальных данных по отношениям выходов антипротонов к выходам протонов (\bar{p}/p), антидейтронов к дейтронам (\bar{d}/d) и антигелия-3 к гелию-3 ($\overline{He^3}/He^3$). Было показано, что с учетом эффекта стопинга экспериментальные данные хорошо описываются с одной константой C₂ = 0.146 для p+p, Be+Be, S+S, Cu+Cu, Au+Au, Pb+Pb столкновений в широкой области энергий от ISR до LHC [41].

Рис. 15. Отношения К[±]/π[±] в неупругих pp-взаимодействиях (верхние рисунки) и наиболее центральных столкновениях BeBe (нижние рисунки) в центральной области быстрот. Кривыми линиями обозначены модельные предсказания, в том числе дубненская модель – BMLZ (Baldin-Malakhov-Lykasov-Zaitsev model).

В рамках одного из самых передовых микроскопических транспортных подходов Parton-Hadron-Quantum-Molecular Dynamics (PHQMD), предназначенного для описания сложных процессов столкновений тяжелых ионов, разработчики, в т.ч. физики группы ОИЯИ, используют алгоритм поиска кластеров вместе с программой «стабилизации» в виде т.н. "afterburner" из-за ограничений динамики QMD. Осознавая потенциал для улучшений, группа приняла решение сосредоточить внимание на замене существующей стабилизирующей подпрограммы полностью динамической процедурой поиска кластеров. Данная модификация необходима для повышения точности и реалистичности нашего моделирования за счет отслеживания динамической эволюции кластеров на протяжении всего процесса столкновения. Проведение строгого тестирования с использованием симулированных и экспериментальных данных по столкновению тяжелых ионов позволит подтвердить эффективность улучшенного подхода.

Такая эволюция описания образования кластеров в рамках транспортного подхода PHQMD позволит не только установить основу для более точных и реалистичных симуляций в сложной области физики высоких энергий, но также совершенствует представления о динамике столкновений тяжёлых ионов.

В настоящий момент данные эксперимента NA49 позволили дать в рамках подхода PHQMD первые указания на механизм образования лёгких ядер в горячей и плотной среде. Однако ввиду инструментальных ограничений и широкой области экстраполяции спектров поперечного импульса дейтронов, для надёжных выводов необходимы новые, более точные измерения эксперимента NA61/SHINE.

Рис. 16. Распределение дейтронов по быстроте для наиболее центральных столкновений Pb+Pb по данным коллаборации NA49 при энергиях столкновений E_{lab} 20 и 40 A ГэB в сравнении с расчетами PHQMD для различных сценариев [42].

2.2.3 Модификация установки

Экспериментальная установка NA61/SHINE представляет собой многоцелевой спектрометр, предназначенный для изучения образования адронов в различных типах столкновений. Важной особенностью установки являются четыре время-проекционных камер (TPC) большого объема. Две вершинных камеры (VTPC), расположенные в магнитном поле, вместе с двумя главными камерами (MTPC) являются основными трековыми устройствами и способны регистрировать большое количество треков частиц (до 1500 в центральных столкновениях Pb+Pb). Четыре меньших TPC: GAP-TPC и 3 Forward-TPC (FTPC) расположены вдоль оси пучка. Такая установка дает отличные возможности измерения импульса заряженных частиц и позволяет идентифицировать частицы, дополняя информацию от детекторов временипролета (ToF). Дальними детекторами на оси пучка являются адронные калориметры (MPSD и FPSD. Информация с этих детекторов используется для определения центральности в ядроядерных столкновениях с очень хорошей точностью. Частицы пучка измеряются набором пучковых детекторов (BPDs). Они используются для измерения траектории луча, а также идентификации частиц пучка.

Во время длительной остановки (LS2) в ЦЕРНе установка NA61/SHINE была значительно модифицирована. Реконструкция детектора NA61/SHINE включала следующее: замену электроники считывания время-проекционной системы; создание нового вершинного детектора (VD); разработку новой время-пролетной системы (ToF-L/R); изготовление новых детекторов положения пучка; создание реперной камеры для измерений скорости дрейфа в ТРС (GRC); модернизацию калориметра; ввод в эксплуатацию системы сбора данных; внедрение новой триггерной системы; интеграцию системы считывания на основе чипа DRS4. Схематическое изображение модернизированной установки NA61/SHINE приведено на Рис.1. Основной целью модернизации установки было существенное увеличение скорости набора данных с 80 Гц до 1.6 кГц, что важно для программы измерений открытого чарма. В 2022 году проведен успешный запуск обновленной установки NA61/SHINE, что позволило набрать рекордную статистику данных по всем трем программам эксперимента за короткий период пучкового времени (за 6 недель зарегистрировано 180 млн триггерных событий в режиме «target IN»). Значительные усилия, которые коллаборация NA61/SHINE вложила в модернизацию детектора, открывают новые возможности для физических исследований и обеспечивают работу эксперимента NA61/SHINE в течение следующих нескольких лет.

Группа сотрудников ОИЯИ внесла существенный вклад в модернизацию установки, а именно была ответственна за разработку, создание и ввод в эксплуатацию 1728 канальной времяпролетной системы (ToF-L) с высоким временным разрешением (~ 50 пс) [43]. Предыдущая времяпролетная система состояла из двух стенок, каждая из которых имела 891 сцинтилляционный детектор [44]. Одна из стен была разработана в ОИЯИ. Временное разрешение в среднем составляло 75 пс, что обеспечивало разделение каонов от пионов до импульса 8 ГэВ/с. После 20 лет работы большинство частей системы потребовало бы значительной реконструкции. В связи с этим было принято решение о замене старой системы на

новую систему ToF на основе многозазорных резистивных пластинчатых камер (МРПК) типа ВМ@N, что стало возможным благодаря гранту дирекции ОИЯИ. Конструкция новой времяпролетной системы NA61/SHINE будет состоять из двух симметричных модулей L/R-ToF (Puc. 17). Левое плечо системы ToF (L-ToF) было введено в эксплуатацию в период длительного остановки (LS2) с 2019 по 2021 гг. Система считывания левого плеча спроектирована на основе 32-канальных модулей DRS4 с аналоговой электроникой. Всего L-ToF модуль состоит из 1920 каналов. Наличие второго плеча (R-ToF) полностью перекроет необходимый аксептанс установки NA61/SHINE. Производство всех элементов второго плеча R-ToF (также на основе технологии mRPC) в значительной степени завершено и в ближайшее время ожидается монтаж на место. Основным кандидатом на роль системы считывания второго плеча является ASIC рісоTDC. В 2023 году детектор mRPC прошел испытания со считыванием рісоTDC на месте установки системы R-ToF с целью определения его характеристик [45].

Рис. 17. Верхний рисунок: схема устройства детектора MRPC. 1 — сотовая панель (5 мм), 2 — пластиковый винт, 3 — внешняя печатная плата (1 мм, 4 — майлар пленка (1 мкм), 5 внешнее стекло с проводящей краской (420 мкм), 6 — внутреннее стекло(280 мкм), 7 рыболовная леска (200 мкм),8 — печатная плата со стрипами (1,5 мм), 9 — стрип. Нижний рисунок: схематичное изображение двух ТоF модулей.

2.2.4 Планы работ

Обширная статистика, уже накопленная при различных энергиях, и широкий диапазон сталкивающихся ядер позволяют нам получить большое количество запланированных физических результатов. Дубненская группа планирует в период с 2025 по 2029 гг. принимать активное участие в получении и анализе данных по всем трем направлениям экспериментальной программы проекта NA61/SHINE и в частности:

- образование легких ядер при ядерных взаимодействиях

- образование гиперонов во взаимодействиях Be+Be, Ar+Sc, Xe+La, Pb+Pb (Идентификация и реконструкция спектров Л-гиперонов в столкновениях Ar+Sc и Xe+La при 30А и 150А·ГэВ как первый шаг к исследованию образования гиперядер);

- образование антивещества в ядро-ядерных взаимодействиях;

- рождение открытого и скрытого чарма при взаимодействии тяжелых ионов;

- нейтринная программа (ответственность группы из Лаборатории ядерных проблем);
- завершится ввод в эксплуатацию новой времяпролетной системы на базе MRPC.

Запланированы доклады на международных встречах, конференциях и публикации научных статей.

По результатам эксперимента NA61/SHINE и проекта NICA планируется подготовить кандидатские и докторские диссертации.

Планы пучкового времени на 2025 год:

Коллаборацией был сделан запрос на свинцовый пучок для измерений открытого очарования. Таким образом программа на 2025 включает в себя:

Физика со свинцовым пучком:

Измерения, запрошенные на 2025 год, являются продолжением измерений открытого очарования с использованием пучка свинца. Предполагая успешный сбор ионных данных в 2024 году, ожидается, что потребуется четыре недели пучка Pb при энергии 150 ГэB/с, чтобы завершить программу измерений очарованных адронов в столкновениях Pb+Pb [46,47].

Физика с адронными пучками:

NA61/SHINE рассматривает возможность запроса адронных пучков летом 2025 года. Обсуждаются два типа измерений: нейтрино, космические лучи и физика сильных взаимодействий. Измерения с пучками адронов низкой энергии, обсуждаемые в дополнении [48], и измерения с пучком протонов при энергии 300 ГэВ/с. Первое требует строительства и ввода в эксплуатацию низкоэнергетической ветви линии пучка H2, а второе требует ввода в эксплуатацию времяпролетного детектора MRPC (правое плечо).

2.2.5. Область ответственности группы ОИЯИ

Вклад/обязанности ОИЯИ:

- создание системы ТОГ на основе MRPC;
- разработка программного обеспечения и сопровождение библиотеки программного обеспечения;
- реконструкция исходных данных и производство DST;
- анализ данных.

2.2.6 Публикации и диссертации

За период 2020-2024 гг. участниками проекта были защищены две кандидатские диссертации:

- 1. Киреев В. «Изучение процессов рождения адронов, образования ядер и гиперядер в столкновениях тяжёлых ионов в модели PHQMD», 2023 г., ОИЯИ Дубна.
- 2. Илиева C. «Measurement of the production cross section of 31 GeV/c protons on carbon via beam attenuation in a 90-cm-long target» 2021 г.

Ведется подготовка к защите двух кандидатских и одной докторской работ.

Публикации:

- 1. NA61/SHINE Experiment. New Results and Future Plans, JINR news, No.1, (2023), pp.17-21
- 2.V. Babkin, V.A. Baskov, A. Burdyko, M. Buryakov, S. Buzin, A. Dmitriev, V.A. Dronov, P. Dulov, V. Golovatyuk, R. Kolesnikov, A.I. L'vov, A. Malakhov, V.V. Polyansky, M. Rumyantsev, Beam test results of the MRPC prototype for the new NA61/SHINE ToF system //Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1034 (2022) 166735.
- 3. Time-of-Flight System for Particle Identification in NA61/SHINE experiment at CERN (2024), to be published
- 4. Signal classification algorithms for the MRPC with DRS4 readout (2024), to be published
- 5. Test of the mRPC with picoTDC readout for the new NA61/SHINE ToF system (2024), to be published

- 6. Kireyeu V. et al. Cluster formation near midrapidity--can the mechanism be identified experimentally? //arXiv preprint arXiv:2304.12019. 2023, accepted for publication in Phys. Rev.C
- Coci G., ... Kireyeu V. et al. Dynamical mechanisms for deuteron production at mid-rapidity in relativistic heavy-ion collisions from energies available at the GSI Schwerionensynchrotron to those at the BNL Relativistic Heavy Ion Collider //Physical Review C. 108 1 (2023) 014902. Schwerionensynchrotron to those at the BNL Relativistic Heavy Ion Collider, Phys.Rev.C 108 (2023) 1, 014902
- Soloveva O., ... Kireyeu V. et al. Exploration of the phase diagram within a transport approach // EPJ Web Conf. 276 (2023) 01025
- Bratkovskaya E., ... Kireyeu V. et al. Midrapidity cluster formation in heavy-ion collisions // EPJ Web Conf. 276 (2023) 03005
- 10. Kireyeu V. et al. Deuteron production in ultrarelativistic heavy-ion collisions: A comparison of the coalescence and the minimum spanning tree procedure // Phys.Rev.C 105 (2022) 4, 044909
- 11. Gläßel S., ... Kireyeu V. et al. Dynamical cluster and hypernuclei production in heavy-ion collisions EPJ Web Conf. 259 (2022) 11003
- 12. Malakhov A.I. and Zaitsev A.A., The Yield Ratio of Anti-Nuclei and Nuclei in Relativistic Nuclear Collisions in the Central Rapidity Region, J.Exp.Theor.Phys. 135 (2022) 2, 209-214
- 13. Lykasov G. I., Malakhov A. I. and Zaitsev A. A. Ratio of cross-sections of kaons to pions produced in pp collisions as a function of \sqrt{s} , Eur.Phys.J.A 57 (2021) 3, 91.
- 14. Lykasov G.I., Malakhov A.I. and Zaitsev A.A., Ratio of kaon-to-pion production cross-sections in BeBe collisions as a function of ss, Eur.Phys.J.A 58 (2022) 6, 112
- 15. G.I. Lykasov, A.I. Malakhov and A.A. Zaitsev, Production of charged kaons in ArSc collisions arXiv:2402.03260, to be published

Коллаборационные статьи:

- 16. NA61/SHINE Collaboration, Search for a critical point of strongly-interacting matter in central 40Ar +45Sc collisions at 13A-75A GeV/c beam momentum, arXiv:2401.03445 [nucl-ex]
- 17. NA61/SHINE Collaboration, Multiplicity and Net-Charge Fluctuations in Ion+Ion Collisions at the SPS Energies, Moscow University Physics Bulletin. 77 (2022) 2, 178-179
- 18. NA61/SHINE Collaboration, Measurement of hadron production in π --C interactions at 158 and 350 GeV/c with NA61/SHINE at the CERN SPS, Physical Review D 107.6 (2023): 062004.
- 19. NA61/SHINE Collaboration, Measurements of KS0, Λ, and Λ⁻ production in 120 GeV/c p+C interactions, Physical Review D 107.7 (2023): 072004
- 20. NA61/SHINE Collaboration, Two-pion femtoscopic correlations in Be+Be collisions at sNN=16.84 GeV measured by the NA61/SHINE at CERN, EPJ C 83.10 (2023): 919.
- 21. NA61/SHINE Collaboration, Search for the critical point of strongly-interacting matter in 40Ar
 + 45Sc collisions at 150A GeV/c using scaled factorial moments of protons, EPJ C 83.9 (2023):
 881.
- 22. NA61/SHINE Collaboration, Measurements of π+, π-, p, p, K+ and K- production in 120 GeV/c p + C interactions, arXiv:2306.02961 [hep-ex]
- 23. NA61/SHINE Collaboration, Femtoscopic Correlation Measurement with Symmetric Lévy-Type Source at NA61/SHINE, Universe 9.7 (2023): 298
- 24. NA61/SHINE Collaboration, Measurements of π±, K±, p and p spectra in 40Ar+45Sc collisions at 13A to 150A GeV/c, arXiv:2308.16683 [nucl-ex]
- 25. NA61/SHINE Collaboration, Excess of charged over neutral K meson production in highenergy collisions of atomic nuclei, arXiv:2312.06572 [nucl-ex]
- 26. NA61/SHINE Collaboration, Measurements of higher-order cumulants of multiplicity and netelectric charge distributions in inelastic proton-proton interactions by NA61/SHINE, arXiv:2312.13706 [hep-ex]

2.2.7. Научный опыт авторов

Авторы проекта имеют большой научный опыт. А. Малахов, Г. Мелкумов и Г. Лыкасов имеют докторские степени и участвуют в исследовании проблем релятивистской ядерной физики. Шесть молодых сотрудников также активно участвовали в проекте. Четверо из них - М. Буряков, А. Дмитриев, Р. Колесников и М. Румянцев - разрабатывают времяпролетную систему для проекта NA61/SHINE на основе детекторов MRPC. Члены команды MRPC используют знания, полученные в ходе R&D и эксплуатации систем ToF для проекта NICA. Остальные двое сотрудников - В. Киреев, А. Зайцев - активно подключились к анализу экспериментальных данных и их теоретической интерпретации. У всех есть публикации и планы на подготовку кандидатских и докторских диссертаций.

2.2.8 Сильные и слабые стороны, возможности, угрозы

Сильные стороны проекта:

- завершение создания времяпролетной ТОГ-стены высокого разрешения;
- соответствие программе по физике частиц;
- наличие современной экспериментальной установки с уникальными параметрами;
- собран большой объем экспериментальных данных по протонно-ядерным и ядерноядерным взаимодействиям в широком диапазоне энергий (от 13 до 158А ГэВ)
- большой опыт анализа экспериментальных данных;
- большое количество молодых сотрудников;
- возможность обучения молодежи для проекта NICA.

В проекте вряд ли можно было найти слабые места. У проекта есть возможность привлечь больше молодых физиков, которые также будут обучаться для мегасайнс проекта NICA.

Литература

- 1. N. Antoniou et al., [NA61/SHINE Collab.], "Study of hadron production in hadron nucleus and nucleus-nucleus collisions at the CERN SPS," Tech. Rep., CERN, 2006. CERN-SPSC-2006-034.
- 2. S. Afanasiev et al., [NA49 Collab.], "Energy dependence of pion and kaon production in central Pb + Pb collisions," Phys.Rev. C66 (2002) 054902.
- 3. C. Alt et al., [NA49 Collab.], "Pion and kaon production in central Pb + Pb collisions at 20-A and 30-A-GeV: Evidence for the onset of deconfinement," Phys. Rev. C77 (2008) 024903.
- 4. L. Adamczyk et al., "Bulk Properties of the Medium Produced in Relativistic Heavy-Ion Collisions from the Beam Energy Scan Program," Phys.Rev. C96 (2017) 044904, arXiv:1701.07065 [nucl-ex].
- 5. A. Rustamov, "The Horn, Kink and Step, Dale: from few GeV to few TeV," Central Eur.J.Phys. 10 (2012) 1267–1270, arXiv:1201.4520 [nucl-ex].
- F. Becattini, J. Manninen, and M. Gazdzicki, "Energy and system size dependence of chemical freeze-out in relativistic nuclear collisions," Phys.Rev. C73 (2006) 044905, arXiv:hepph/0511092 [hep-ph].
- 7. C. Alt et al., [NA49 Collab.], "Bose-Einstein correlations of pi-pi- pairs in central Pb+Pb collisions at A-20, A-30, A-40, A-80, and A-158 GeV," Phys. Rev. C 77 (2008) 064908, arXiv:0709.4507 [nucl-ex].
- M. Gazdzicki, M. Gorenstein, and P. Seyboth, "Recent Developments in the Study of Deconfinement in Nucleus-Nucleus Collisions," Int.J.Mod.Phys. E23 (2014) 1430008, arXiv:1404.3567 [nucl-ex].
- 9. V. Vovchenko, V. V. Begun, and M. I. Gorenstein, "Hadron multiplicities and chemical freezeout conditions in proton-proton and nucleus-nucleus collisions," Phys. Rev. C 93 no. 6, (2016) 064906, arXiv:1512.08025 [nucl-th].
- A. Aduszkiewicz, [NA61/SHINE Collab.], "Beam momentum scan with Pb+Pb collisions," Tech. Rep. CERN-SPSC-2015-038. SPSC-P-330-ADD-8, CERN, Geneva, Oct, 2015. <u>https://cds.cern.ch/record/2059811</u>.
- 11. M. Gaździcki, M.I. Gorenstein, Acta Phys. Pol. B 30, 2705 (1999).

- 12. NA49 Collaboration (C. Alt et al.), Phys. Rev. C 77, 024903 (2008).
- 13. NA61/SHINE Collaboration, Measurements of π^{\pm} , K^{\pm} , p and \bar{p} spectra in ⁴⁰Ar+⁴⁵Sc collisions at 13*A* to 150*A* GeV/c // arXiv:2308.16683. 2023.
- 14. O. Panova, "First results on spectra of identified hadrons in central Xe+La collisions from NA61/SHINE at CERN SPS," in 30th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions (Quark Matter 2023). 2023. https://indico.cern.ch/event/1139644/contributions/5514531.
- 15. NA61/SHINE Collaboration, arXiv:2312.13706 [hep-ex].
- N.G. Antoniou, F.K. Diakonos, A.S. Kapoyannis, K.S. Kousouris, Phys. Rev. Lett. 97, 032002 (2006).
- NA61/SHINE Collaboration, Search for the critical point of strongly-interacting matter in ⁴⁰Ar + ⁴⁵Sc collisions at 150 A GeV/c using scaled factorial moments of protons. Eur. Phys. J. C 83, 881 (2023).
- 18. Bryliński W. News from the strong interactions program of NA61/SHINE //EPJ Web of Conferences. EDP Sciences, 2022. T. 258. C. 05007.
- 19. NA61/SHINE Collaboration, Search for the QCD critical point by NA61/SHINE at the CERN SPS //arXiv preprint arXiv:2308.04254. 2023.
- 20. B. Porfy, NA61/SHINE Collaboration, Universe 9 no. 7, (2023) 298, arXiv:2306.08696 [nucl-ex].
- Adhikary H. Search for the critical point of strongly interacting matter (Intermittency analysis by NA61/SHINE at CERN SPS) //EPJ Web of Conferences. – EDP Sciences, 2022. – T. 274. – C. 06008.
- 22. NA61/SHINE Collaboration, Eur. Phys. J. C 82, 322 (2022).
- 23. NA61/SHINE Collaboration, Eur. Phys. J. C 80, 460 (2020).
- 24. NA61/SHINE Collaboration, K_S^0 meson production in inelastic p+ p interactions at 31, 40 and 80 GeV/c beam momentum measured by NA61/SHINE at the CERN SPS //arXiv preprint arXiv:2402.17025. 2024.
- 25. NA61/SHINE Collaboration, Eur. Phys. J. C 81, 911(2021).
- 26. NA61/SHINE Collaboration, Excess of charged over neutral K meson production in high-energy collisions of atomic nuclei //arXiv preprint arXiv:2312.06572. 2023.
- 27. Report from the NA61/SHINE experiment at the CERN-SPSC-2023-030 / SPSC-SR-336 2023.
- 28. L. Aliaga et al., [MINERvA Collab.] Phys. Rev. D 94 no. 9, (2016) 092005, arXiv:1607.00704 [hep-ex].[Addendum: Phys.Rev.D 95, 039903 (2017)].
- 29. NA61/SHINE Collaboration, Phys. Rev. D 107 no. 7, (2023) 072004, arXiv:2211.00183[hep-ex].
- 30. NA61/SHINE Collaboration, Phys. Rev. D 108 no. 7, (2023) 072013, arXiv:2306.02961[hep-ex].
- 31. NA61/SHINE Collaboration, Phys. Rev. D 107 no. 6, (2023) 062004, arXiv:2209.10561[nucl-ex].
- 32. NA61/SHINE Collaboration, Eur. Phys. J. C 77 no. 9, (2017) 626, arXiv:1705.08206 [nucl-ex].
- M. Unger, NA61/SHINE Collaboration, PoS ICRC2019 (2020) 446, arXiv:1909.07136 [astroph.HE].
- 34. N. Amin, NA61/SHINE Collaboration, PoS ICRC2021 (2021) 102, arXiv:2107.12275 [nucl-ex].
- 35. N. Amin, NA61/SHINE Collaboration, PoS ICRC2023 (2023) 075.
- 36. Malakhov A. I. and Lykasov G. I., Mid-rapidity dependence of pion production in p-p and A-A collisions, EPJ A 56.4 (2020): 114.
- 37. Lykasov G. I. and Malakhov A. I., Self-consistent analysis of hadron production in pp and AA collisions at mid-rapidity, EPJ A 54.11 (2018): 187.
- 38. Lykasov G.I., Malakhov A.I. and Zaitsev A.A., Ratio of cross-sections of kaons to pions produced in pp collisions as a function of \sqrt{s} , Eur. Phys. J. A 57, 91 (2021).

- 39. Lykasov G.I., Malakhov A.I. and Zaitsev A.A., Ratio of kaon-to-pion production cross-sections in BeBe collisions as a function of √s, Eur. Phys. J. A 58, 112 (2022).
- 40. G.I. Lykasov, A.I. Malakhov, A.A. Zaitsev, Production of charged kaons in ArSc collisions, arXiv:2402.03260 [hep-ph]
- 41. Malakhov A.I. and Zaitsev A.A. The Yitld Ratio of Anti-Nuclei and Nuclei in Relativistic Nuclear Collisions in Central Rapidity Region // Journal of Experimental and Theoretical Physics, 2022, Vol. 135, No. 2, pp. 209–214
- 42. V. Kireyeu et. al, arxiv:2304.12019, to be published soon.
- 43. V.Babkin, V.A.Baskov, A.Burdyko, M.Buryakov, S.Buzin, A.Dmitriev, V.A.Dronov, P.Dulov, V.Golovatyuk, R.Kolesnikov, A.I.L'vov, A.Malakhov, V.V.Polyansky, M.Rumyantsev. Beam test results of the MRPC prototype for the new NA61/SHINE ToF system. NIM A, Volume 1034, 1 July 2022, 166735.
- 44. Afanasiev S.V. et al. Multichannel time-of-flight detector for NA49 hadron spectrometer at CERN. Laboratory of High Energies, 1997. №. JINR--5-85-97.
- 45. A. Dmitriev et al., Test of the mRPC with picoTDC readout for the new NA61/SHINE ToF system, 2024 (to be published)
- 46. NA61/SHINE Collab., "Open Charm Measurements: Pb-beam schedule and detector upgrade" Tech. Rep. CERN-SPSC-2022-005, SPSC-M-792, CERN, Geneva, 2022. <u>https://cds.cern.ch/record/2799311</u>.
- NA61/SHINE Collab., "Study of Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS: Early Post-LS2 Measurements and Future Plans," Tech. Rep. CERN-SPSC-2018-008, SPSC-P-330-ADD-10, CERN, Geneva, 2018. <u>https://cds.cern.ch/record/2309890</u>.
- 48. NA61/SHINE Collab., "Addendum to the NA61/SHINE Proposal: A Low-Energy Beamline at the SPS H2," Tech. Rep. CERN-SPSC-2021-028, SPSC-P-330-ADD-12, CERN, Geneva, 2021. https://cds.cern.ch/record/2783037.

2.3. Предполагаемый срок выполнения

2025-2029

2.4. Участвующие лаборатории ОИЯИ

Лаборатория физики высоких энергий им. В.И. Векслера и А.М. Балдина (ЛФВЭ), Лаборатория ядерных проблем имени В.П. Джелепова (ЛЯП).

2.4.1. Потребности в ресурсах МИВК

Вычислительные ресурсы	Распределение по годам				
	1 год	2 год	3 год	4 год	5 год
Хранение данных (ТБ)					
- EOS					
- Ленты					
Tier 1 (ядро-час)					
Tier 2 (ядро-час)					
СК «Говорун» (ядро-час)					
- CPU					
- GPU					
Облака (СРИ ядер)					

2.5. Участвующие страны, научные и научно-образовательные организации

Организация	Страна	Город	Участники	Тип соглашения
Institute of Physics	Монголия	Улан-Батор	B.Baatar, Ts.	Протокол
and Technology of			Baatar, M.Sovd, N.	
Mongolian			Khishigbuyan, B.	
Academy of			Otgongerel, M.	
Sciences			Urangua	
Sofia University	Болгария	София	M. Bogomilov,	Протокол
"St. Kliment			D. Kolev, S. Ilieva,	
Ohridski"			R. Tsenov	
The American	Индия	Мадураи	N. Marimuthu,	Протокол
College			S. Sanila	

2.6. Организации-соисполнители (те сотрудничающие организации/партнеры без финансового, инфраструктурного участия которых выполнение программы исследований невозможно. Пример — участие ОИЯИ в экспериментах LHC в CERN)

3. Кадровое обеспечение

3.1. Кадровые потребности в течение первого года реализации

№№ п/п	Категория работника	Основной персонал, сумма FTE	Ассоциированный персонал, сумма FTE
1.	научные работники	4.4	
2.	инженеры	0.7	
3.	специалисты		
4.	служащие		
5.	рабочие		
	Итого:	5.1	

3.2. Доступные кадровые ресурсы 3.2.1. Основной персонал ОИЯИ

NºNº ⊓/⊓	Категория	ФИО	Подразделение	Должность	Сумма FTE
1.	научные	Головатюк В.М.	ЛФВЭ	Нач. отдела	0.1
	работники	Дмитриев А.В.	ЛФВЭ	нс	0.7
		Зайцев А.А.	ЛФВЭ	снс	0.5
		Киреев В.А.	ЛФВЭ	нс	0.3
		Красноперов А.В.	ЛЯП	снс	0.1
		Лыкасов Г.И.	ЛЯП	гнс	0.3
		Любушкин В.В.	ЛЯП	снс	0.1
		Малахов А.И.	ЛФВЭ	Нач. отдела	0.3
		Матвеев В.А.	Дирекция ОИЯИ	науч. рук.	0.1
		Мелкумов Г.Л.	ЛФВЭ	гнс	0.7
		Попов Б.А.	ЛЯП	снс	0.9
		Румянцев М.М.	ЛФВЭ	нс	0.2
		Терещенко В.В.	ляп	нач. группы	0.1
2.	инженеры	Буряков М.Г.	ЛФВЭ		0.2
		Колесников Р.Ю.	ЛФВЭ		0.5
3.	специалисты				
4.	рабочие				
	Итого:				5.1

3.2.2. Ассоциированный персонал ОИЯИ

№№ п/п	Категория работников	Организация-партнер	Сумма FTE
1.	научные работники		
2.	инженеры		
3.	специалисты		
4.	рабочие		
	Итого:		

4. Финансовое обеспечение

4.1. Полная сметная стоимость проекта 950 тыс. долл. США

Прогноз полной сметной стоимости (указать суммарно за весь срок, за исключением ФЗП). Детализация приводится в отдельной форме.

4.2. Внебюджетные источники финансирования

Предполагаемое финансирование со стороны соисполнителей/заказчиков — общий объем.

Руководитель проекта

Дата представления проекта / подпроекта КИП в ДНОД _____ Дата решения НТС Лаборатории _____, номер документа _____ Год начала проекта / подпроекта КИП _____

(для продлеваемых проектов) — год начала работ по проекту _____

	Наименования затрат, ресурсов, источников финансирования в ресурса		Стоимость (тыс. долл.)	Стоимость, распределение по годам				
			в ресурсах	1 ГОЛ	2 ГОЛ	3 гол	4 ГОЛ	5 ГОЛ
	Международное сотрудничество (МНТС)		400	80	80	80	80	80
		Материалы	500	100	100	100	100	100
		Оборудование и услуги сторонних организаций (пуско-наладочные работы) Пуско-наладочные работы	50	10	10	10	10	10
	Услуги научно- исследовательских организаций							
		Приобретение программного обеспечения						
		Проектирование/строительство						
		Сервисные расходы (планируются в случае прямой принадлежности к проекту)						
ole	Іормо-час	Ресурсы						
дими		– сумма FTE,						
o6xo pecy		– ускорителя/установки,						
He	H	– реактора,					8	
Источники финансирования	Бюджетные средства	Бюджет ОИЯИ (статьи бюджета)	950	190	190	190	190	190
	знебюджет доп. смета)	Вклады соисполнителей Средства по договорам с заказчиками						
	H C	финансирования						

Предлагаемый план-график и необходимые ресурсы для осуществления Проекта NA61/SHINE

Руководитель проекта

March Jaurparela

Экономист Лаборатории

ЛИСТ СОГЛАСОВАНИЙ ПРОЕКТА

Исследование рождения адронов в адрон-ядерных и ядро-ядерных взаимодействиях на ускорителе SPS в ЦЕРН (NA61/SHINE - SPS Heavy Ion and Neutrino Experiment) УСЛОВНОЕ ОБОЗНАЧЕНИЕ ПРОЕКТА NA61/SHINE

ШИФР ПРОЕКТА

ШИФР ТЕМЫ 02-1-1087-2009

ФИО РУКОВОДИТЕЛЯ ПРОЕКТА Малахов А.И.

СОГЛАСОВАНО ВИЦЕ-ДИРЕКТОР ИНСТИТУТА			
	ПОДПИСЬ	ФИО	ДАТА
ГЛАВНЫЙ УЧЕНЫЙ СЕКРЕТАРЬ ИНСТИТУТА			
	ПОДПИСЬ	ФИО	ДАТА
ГЛАВНЫЙ ИНЖЕНЕР			
	ПОДПИСЬ	ФИО	ДАТА
ДИРЕКТОР ЛАБОРАТОРИИ			
	ПОДПИСЬ	ФИО	ДАТА
ГЛАВНЫЙ ИНЖЕНЕР ЛАБОРАТОРИИ			
	ПОДПИСЬ	ФИО	ДАТА
УЧЕНЫЙ СЕКРЕТАРЬ ЛАБОРАТОРИИ			
	ПОДПИСЬ	ФИО	ДАТА
РУКОВОДИТЕЛЬ ТЕМЫ			
	ПОДПИСЬ	ФИО	ДАТА
РУКОВОЛИТЕЛЬ ПРОЕКТА			
I J RODOLITICID III OLKIN	ПОДПИСЬ	ФИО	ДАТА
ОДОБРЕН ШКК ПО НАПРАВЛЕНИЮ	ПОДПИСЬ	ФИО	ДАТА