On SpdRoot profiling

Didorenko Alexey
didorenko@)jinr.ru

Voytishin Nikolay
nvoytish@jinr.ru

MLIT JINR

Relevance

Spin Physics
Detector

SPDCDR&TDR

NEWS AND ANNOUNCEMENTS

UPCOMING CONFERENCES

CONTACTS

USEFUL LINKS

Collaboration

PARTICIPATING INSTITUTIONS

EXECUTIVE BOARD

TECHNICAL BOARD

PUBLICATION COMMITTEE

DOCUMENTS

SPD Presentations

llider NICA

SPD Software

SPD Software Wiki

Monte Carlo simulation, event reconstruction for both simulated and real data, data analysis

and visualization are planned to be performed by an object oriented C++ toolkit SPDroot. It is

based on t ot framework initially developed for the FAIR experiments at GSI Darmstadt
and partially compatible with MPDroot and BM@Nroot software used at MPD and BM@N,
respectively.

The SPD detector description for Monte Carlo simulation is based on the ROOT geometry while

condary particles through material of the setup and simulation of detector

by GEANT4 code. The standard multipur

SpdRoot is a software package that is capable of
performing Monte Carlo simulation of events,
reconstruction, analysis and visualization of events.

It is argued that the reconstruction runs slower than
expected event processing speeds.

The current issue of this project is to find bottlenecks in
the source code of the program and further improve the
processing speed and efficiency of computing
resources.

Aim of the work

Aim of the work: to find bottlenecks of the event reconstruction process in the
SpdRoot source code.
Tasks:
For reconstruction functions measure:
e Y% resources used;
e execution time.

To study the influence of field type on reconstruction speed.

Technology stack

/ [alxdid@ncx104 ~]$ perf

usage: perf [--version] [--help] [OPTIONS] COMMAND [ARGS]

The most commonly used perf commands are:
annotate Read perf.data (created by perf record) and display annotated code
archive Create archive with object files with build-ids found in perf.data file
bench General framework for benchmark suites
buildid-cache Manage build-id cache.
buildid-list List the buildids in a perf.data file
c2c Shared Data C2C/HITM Analyzer.
config Get and set variables in a configuration file.
data Data file related processing
diff Read perf.data files and display the differential profile
evlist List the event names in a perf.data file
ftrace simple wrapper for kernel's ftrace functionality
inject Filter to augment the events stream with additional information
kallsyms Searches running kernel for symbols
kmem Tool to trace/measure kernel memory properties
kvm Tool to trace/measure kvm guest os
list List all symbolic event types
lock Analyze lock events
mem Profile memory accesses
record Run a command and record its profile into perf.data
report Read perf.data (created by perf record) and display the profile
sched Tool to trace/measure scheduler properties (latencies)
script Read perf.data (created by perf record) and display trace output
stat Run a command and gather performance counter statistics
test Runs sanity tests.
timechart Tool to visualize total system behavior during a workload
top System profiling tool.
version display the version of perf binary
probe Define new dynamic tracepoints
trace strace inspired tool

See 'perf help COMMAND' for more information on a specific command.

pandasmatpltlib

Profiling as a method for finding bottlenecks

Profiling is used to monitor the execution of
a program to collect data on various aspects
such as:

e execution time;

e resources used.

The purpose of profiling is to find
bottlenecks or areas where the program can
be optimized to improve its efficiency and
performance.

perf as a tool for analyzing software performance

[alxdid@ncx10Ud ~]$ perf

usage: perf [--version] [--help] [OPTIONS] COMMAND [ARGS]

perf is a profiling tool that is designed for
. The most commonly used perf commands are:
LanX'baSed SYStemS Advantages annotzte g Read Eer-F.data (created by perf record) and display annotated code

archive Create archive with object files with build-ids found in perf.data file

() S|mp|e Command ||ne |nterface bench General framework for benchmark suites

buildid-cache Manage build-id cache.

® rich funCtiona”ty_ buildid-list List the buildids in a perf.data file

c2c Shared Data C2C/HITM Analyzer.
config Get and set variables in a configuration file.
data Data file related processing
diff Read perf.data files and display the differential profile
TO analyze the perfOrmance Of SdeOOt We evlist List the event names in a perf.data file
. ftrace simple wrapper for kernel's ftrace functionality
used SUCh perf Commands aS inject Filter to augment the events stream with additional information
kallsyms Searches running kernel for symbols
] perf record kmem Tool to trace/measure kernel memory properties
kvm Tool to trace/measure kvm guest os
[perf report list List all symbolic event types
Tlock Analyze lock events
() perf probe mem Profile memory accesses

record Run a command and record its profile into perf.data

report Read perf.data (created by perf record) and display the profile
sched Tool to trace/measure scheduler properties (latencies)

script Read perf.data (created by perf record) and display trace output
stat Run a command and gather performance counter statistics

test Runs sanity tests.

timechart Tool to visualize total system behavior during a workload

top System profiling tool.

version display the version of perf binary

probe Define new dynamic tracepoints

trace strace inspired tool

See 'perf help COMMAND' for more information on a specific command.

Characteristics in the case of a field of 1/8 of the total size

SpdFieldMapl 8 *MagField = new SpdFieldMapl 8("full map");
MagField->InitData("field fulll 8.bin");

SpdRegion *reg = MagField->CreateFieldRegion("box") ;
reg->SetBoxRegion (- , , - , , - ,)Y, //
(X,Y,Z2) (min,max), cm

run->SetField(MagField) ;

Characteristics in the case of a field of 1/8 of the total size.
Resources used

RKMatrix functions

SpdRoot functions
Root functions

C++ functions

<=0.5% overhead reconstruction functions

SpdRoot functions (27.5%) top CPU users

6.97% genfit::RKTrackRep::RKPropagate - old algorithm (2013) part of
GENFIT. Extrapolation by Runge-Kutta method, many matrix operations.

5.60% SpdFieldMap1_8::Approx_0 - function consists of multiplication and
addition of vectors and matrices.

2.14% SpdFieldMap1_8::FindCell - search for the cell in the field to which the
point belongs.

1.61% SpdFieldMap1_8::GetField - returns value of the field at the point.

1.52% SpdBoxRegion::IsIinside - check if the point is inside the area around the
point (r,z).

Characteristics in the case of a field of 1/8 of the total size.
Execution time

UpdateField 4.14
SymmetryHelper 4.26

RKproS;fsggfé — 767 lotal time = 124,0379

QR 10.12
NoiseCoulomb 0.29
isinsideRegion 00.35 seC per event
Isinside 8.03 n | dn rf
GetLowlestLimitval lll1.66 ()
GetFieldVal 61,93 INCluding pe
GetField 3.53

FindNextBoundary 39.29
FindCell 4.04

Extrap 5.0
EstimateStep 6.47
Approx_0 12.07

Time, %

UpdateField
SymmetryHelper
Stepper
RKPropagate

QR

NoiseCoulomb
IsinsideRegion
Isinside
GetLowlestLimitVal
GetFieldVval
GetField
FindNextBoundary
FindCell

Extrap
EstimateStep

Approx_0 1.53

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Calls, num (1e6) le6

Characteristics in case of constant field

SpdConstField* MagField = new SpdConstField() ;

MagField->SetField (0., ,); // kG

SpdRegion* reg = 0;

reg = MagField->CreateFieldRegion ("tube™) ;
reg->SetTubeRegion (0, , - ,); // (R,Z) (min,max),
cm

run->SetField(MagField) ;

Characteristics in case of constant field. Resources used

RKMatrix functions

SpdRoot functions

Root functions

C++ functions

<=0.5% overhead reconstruction functions

Characteristics in case of constant field. Execution time

UpdateField
SymmetryHelper
Stepper
RKPropagate

QR

NoiseCoulomb
IsinsideRegion
Isinside
GetLowlestLimitVal
GetFieldVal
GetField
FindNextBoundary
FindCell

Extrap
EstimateStep
Approx_0

UpdateField
SymmetryHelper
Stepper
RKPropagate

QR

NoiseCoulomb
IsinsideRegion
Isinside
GetLowlestLimitVal
GetFieldVal
GetField
FindNextBoundary
FindCell

Extrap
EstimateStep
Approx_0

4.22
4.28

0.12
0.27

1.67

4.08

89.0

83.01
74.53

3.01
77.54

0.0

Calls, num (1e6)

2.5

le6

Total time = 205,3638 sec
per event (including perf)

Conclusion

e Different types of fields affect the reconstruction speed, but the percentages
of function running time are quite close in different cases.

e There are differences in the number of function calls.

e Root - functions take more resources in the case of constant field.

Plans:
e Get more statistics on more events and on other types of magnetic fields.
e Make sure that field parameters affect the reconstruction speed.

Thank you for your attention!

