Study of the feasibility of η_c measurements at SPD in $\eta_c \rightarrow \phi \phi \rightarrow 2 (K^+K^-)$ decay

20. 03. 2024

A. N. Skachkova (DNLP, JINR, Dubna)

Anna.Skachkova@cern.ch, annask@jinr.ru

The Study is focused on possibility of background separation

- Pythia 8.309 (p + p, $\sqrt{s} = 27$ GeV). The main background minimum-bias (SoftQCD:nonDiffractive)
- Taking as a starting point cross section of η_c production ~ 400 nb, we consider the channel $g g \rightarrow \eta_c + g$ (cross-section from PYTHIA8 $\sigma_{\eta_c + g} = 416$ nb)

Formulae for η_c production in Pythia8 were taken as proposed by Anton Anufriev in his talk (11.04.23) (We can also expect for $g g \rightarrow \eta_c$ cross-section $\sigma_{\eta_c} = 2230 \text{ nb} - 5.36 \text{ times higher !!!}$)

 η_c is forced to decay to $\phi \phi$, thus the final cross-section for

2

 $g g \rightarrow \eta_c + g \rightarrow \varphi \varphi + g \rightarrow 2 (K^+K^-) + g$ should be $\sigma_{\eta c + g} = 0.159 \text{ nb} \rightarrow -1.59 * 10^5 \text{ events/year}$ (Year = 10⁷ sec, Lum = 10³² /cm² *sec)

π^{\pm} / K[±] reconstruction

PID in SPD is taking place in VD, Straw, TOF & Aerogel But the best separation power for π[±] / K[±] gives **TOF** (see talk of Artem Ivanov **25.10.2023** SPD CM and others).

At P > 1.4 GeV we potentially can have problems with π^{\pm} / K^{\pm} misidentification.

A.N.Skachkova

va $\mathbf{\eta}_c$ study in $\boldsymbol{\eta}_c \rightarrow \boldsymbol{\varphi} \ \boldsymbol{\varphi} \rightarrow 2 \ (K^+K^-)$ decay 20.03.2024

π^{\pm} / K[±] reconstruction

m² vs p

(see talks of Artem Ivanov of 25.10.23, 6.10.2022 & 27.04.2023).

Barrel

End-Cap

For the moment we have at $P_{K\pm} < 1.32 \text{ GeV} (1.2 \text{ GeV before}) - 100\%$ identification. At the region $1.32 \text{ GeV} < P_{K\pm} < 1.67 \text{ GeV} (1.2 \text{ GeV} < P_{K\pm} < 1.4 \text{ GeV before}) ~ 95\%$. So at first approximation we considered the condition when all 4 signal K[±] have $P_{K\pm} < 1.4 \text{ GeV} (\sim \frac{1}{2} \text{ of events})$

φ reconstruction

For **φ** reconstruction we are looking for **K⁺K⁻** combinations (**φ** candidate)

in the region

 $0.99 < M_{inv} (K^+K^-) < 1.05 GeV$

including 1.5% Gauss smearing of P

20.03.2024

η_c reconstruction

A.N.Skachkova

 η_c study in $\eta_c \rightarrow \varphi \phi \phi \rightarrow 2 (K^+K^-)$ decay 20.03.2024

Current results

10⁷ Signal and 3*10⁸ Background events now were generated The proposed selection criteria

 $P(K\pm) < 1.4 \text{ GeV } \&\& 0.99 < M_{inv} (K^+K^-) < 1.05 \text{ GeV } \&\& 2.85 < M_{inv} (\phi\phi) < 3.09 \text{ GeV}$

allowed to achieve **background suppression** to **741 nb** (3.11 * 10⁻³ %) that corresponds to

S/B = 1.3 * 10⁻⁴ for $gg \rightarrow \eta_c + g$ channel.

7

Thus we can expect SI√(S+B) ≈ <u>3.55</u> (improved at higher statistics and some change in algorithm!)

III Fraction of signal events where at least 1K in 2 (K⁺K⁻) combination is fake one is ~ 0.65%

Pφ_{candidate} **correlations**

A.N.Skachkova

 η_c study in $\eta_c \rightarrow \phi \phi \phi \rightarrow 2 (K^+K^-)$ decay 20.03.2024

|PTφ| correlations

PT vecsum = vector sum of PT's of $(K^{+}K^{-})(K^{+}K^{-})$ forming η_{c} candidate.

PT scalsum = scalar sum of PT's of (K⁺K⁻)(K⁺K⁻) forming **η**_c candidate. -->

Shows better difference in distributions

↓

Can be used for BKG suppression : *Cut PT scalsum > 1.8 GeV*

A.N.Skachkova

9

 $\mathbf{\eta}_{c}$ study in $\boldsymbol{\eta}_{c} \rightarrow \boldsymbol{\varphi} \boldsymbol{\varphi} \rightarrow 2 (K^{+}K^{-})$ decay 20.03.2024

PZφ correlations

10

Pz scalsum = scalar sum of Pz's of $(K^{+}K^{-})(K^{+}K^{-})$ forming η_{c} candidate.

Pz vecsum = vector sum of Pz's of (K⁺K⁻)(K⁺K⁻) forming η_c candidate. --> Shows better difference in distributions

Can be used for BKG suppression : *Cut: PZ vecsum > 0.2 GeV*

A.N.Skachkova

 $\mathbf{\eta}_{c}$ study in $\boldsymbol{\eta}_{c} \rightarrow \boldsymbol{\varphi} \boldsymbol{\varphi} \rightarrow 2 (K^{+}K^{-})$ decay 20.03.2024

R ($\phi\phi$) / **R** (K⁺K⁻) distributions

R = $\sqrt{\Delta \eta^2 + \Delta \phi^2}$ = $\sqrt{(\eta_{K+} - \eta_{K-})^2 + (\phi_{K+} - \phi_{K-})^2}$ - shows some difference ⇒ can be used

R PhiPhi distribution R_K+K- distribution 1462053 Entries N_{events}/year 6000 Entries 2924106 8 20000 Mean 2.56Mean 0.5119 5000 218000 Std Dev 0.6057 Std Dev 0.42372516000 4000 14000 12000 3000 10000 2000 -----8000 6000 1000 E ··· 4000 2000 0 1 2 3 4 5 6 0 0 5 1 1.5 2 2.5 7 8 9 з 3.5 R (Phi, Phi) R (K⁺K⁻) R Ph Phi distribution $\times 10^{6}$ R K+K- distribution Entries 9329 $\times 10$ N_{events}/year 45 Entries 18658 N_{events}/year Mean 3.347 40 70 F Mean 0.9319Std Dev 0.8163 35 60 Std Dev 0.6855 30 50 25 40F 20 30 E 15 20 E 10 10 5 0 0.5 유 1.5 2 2.5 3 3.5 5 1 2 з 4 6 9 B (K⁺K⁻) R (Phi, Phi)

*R*_{K+K-} < 0.6 ↓ **R**_{K+K-} < 0.5

A.N.Skachkova η_c study in $\eta_c \rightarrow \varphi \phi \phi \rightarrow 2 (K^+K^-)$ decay 20.03.2024

S

g

n

a

B

a

Armenteros - Podolanski distributions

$$\alpha = (P^{K+} - P^{K-}) / (P^{K+} + P^{K-})$$

No significant difference

Proposed cuts

1. $P(K^{\pm}) < 1.4 \text{ GeV}$ & $0.99 < M_{inv}(K^{+}K^{-}) < 1.05 \text{ GeV}$ & $2.85 < M_{inv}(\phi\phi) < 3.09 \text{ GeV}$

N1 + R (φ φ) < 3.3 GeV
N1 + R (K⁺K⁻) < 0.5 GeV
N1 + (R (K⁺K⁻) Cut + R (φ φ) Cut)

N1 + PT scalsum 4K > 1.8 GeV
N1 + PZ vecsum 4K > 0.2 GeV
N1 + (Pz vecsum Cut + PT scalsum Cut)

8. $N1 + (Pz vecsum Cut + PT scalsum Cut) + R(K^+K^-) Cut$ 9. $N1 + (Pz vecsum Cut + PT scalsum Cut) + (R(K^+K^-) Cut + R(\phi \phi) Cut)$

Results of additional cuts 2-9 on the events sample after 1-st set of cuts is shown in the table below (with fractions relative to the remainder after the first restriction)

A.N.Skachkova η_c study in $\eta_c \rightarrow \varphi \phi \phi \rightarrow 2 (K^+K^-)$ decay 20.03.2024

Current results

Cut N	Rest of Sig	Rest of BKG	S/B ratio	S/√(S+B)
2.	91.1 %	52.9 %	2.25 * 10-4	4.45
3.	37.7 %	9.5 %	5.27 * 10-4	3.10
4.	37.3 %	8.2 %	5.90 * 10-4	4.60
5.	79.5 %	19.3 %	5.37 * 10 ⁻⁴	6.42
6.	93.5 %	81.8 %	1.50 * 10-4	3.69
7.	74.5 %	16.2 %	6.01 * 10 ⁻⁴	6.58
8.	33.9 %	5.04 %	8.79 * 10-4	5.37
9.	33.8 %	4.97 %	8.88 * 10-4	5.36

Thus the best combination of cuts is N7 (& N5) N1 + (*Pz vecsum Cut* + *PT scalsum Cut*) that gives S/√(S+B) ≈ 6.58 (6.42) which corresponds to the final statistics

~ 72000 events/year

(in the case of $\sigma_{nc} \approx 400 \text{ nb}$)

A.N.Skachkova η_c study in $\eta_c \rightarrow \varphi \phi \phi \rightarrow 2 (K^+K^-)$ decay 20.03.2024

Case of $2 \rightarrow 1$ process $gg \rightarrow \eta_c$

Predictions for SPD NICA within NRQCD

Total cross-section

- PRA CSM: $\sigma_{tot} = 0.48 \, \mu b$
- PRA NRQCD: $\sigma_{to} = 0.49 \, \mu b$
- GPM CSM: $\sigma_{tot} = 1.3 \, \mu b$
- GPM NRQCD: $\sigma_{tot} = 1.31 \, \mu b$

A. Anufriev, V. Saleev The XXVth International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics" 21 September 2023, Dubna

Some theoretical approaches give us cross-section for $\mathbf{g} \mathbf{g} \rightarrow \mathbf{\eta}_c$ up to $\mathbf{\sigma}_{nc} = \mathbf{1310} \text{ nb } \mathbf{!}$

Case of $2 \rightarrow 1$ process $gg \rightarrow \eta_c$

The calculation were made under the assumption $\sigma_{nc} \approx \frac{1250 \text{ nb}}{1250 \text{ nb}}$

(We can also expect for $\mathbf{g} \mathbf{g} \rightarrow \mathbf{\eta}_c$ cross-section $\sigma_{nc} = 2230 \text{ nb}$ (PYTHIA prediction))

Cut N	Rest of Sig	Rest of BKG	S/B ratio	S/√(S+B)		
2.	90.4 %	52.9 %	7.56 * 10-4	15.0	Here the best combination of	
3.	38.4 %	9.5 %	1.18 * 10 ⁻³	15.2	CUTS IS N5 (& N7) N1 + PT scalsum Cut that gives	
4.	38.0 %	8.2 %	2.04 * 10 ⁻³	16.0		
5.	78.9 %	19.3 %	2.06 * 10 -3	24.6	SIN(S+B) ≈24.6 (22.0)	
6.	92.6 %	81.8 %	5.07 * 10-4	12.4	that corresponds to the final	
7.	73.2 %	16.2 %	2.01 * 10 ⁻³	22.0	statistics	
8.	34.2 %	5.04 %	3.01 * 10 ⁻³	18.4	~ 295 000 events/year	
9.	34.1 %	4.97 %	3.04 * 10-3	18.4	(in the case of $\sigma_{nc} \approx \frac{1250 \text{ nb}}{2}$)	

A.N.Skachkova $\mathbf{\eta}_c$ study in $\boldsymbol{\eta}_c \rightarrow \boldsymbol{\varphi} \, \boldsymbol{\varphi} \rightarrow 2 \, (K^+K^-)$ decay 20. 03. 2024

Thank you for your attention!

• $\eta_c \rightarrow \phi \phi \rightarrow 2(K^+K^-)$ decay

The main PDG parameters

- η_c (1S) Mass = 2983.9 ± 0.4 MeV ~ 2.984 GeV
- η_c (1S) Width = 32.0 ± 0.7 MeV ~ 0.032 GeV
- Branching $\eta_c \rightarrow \phi \phi = (1.58 \pm 0.19) \times 10^{-3}$
- / **\varphi** (1020) Mass = 1019.461 ± 0.016 MeV ~1.019 GeV
- φ (1020) Width = 4.249 ± 0.013 MeV ~ 0.00425 GeV
- Branching ϕ (1020) $\rightarrow K^+K^- = (49.1 \pm 0.5) \%$

Thus Branching $\phi \phi \rightarrow 2 (K^+K^-) = 24.1 \%$

Total Branching $\eta_c \rightarrow \varphi \phi \phi \rightarrow 2 (K^+K^-) = 3,8090798 \times 10^{-4}$

A.N.Skachkova η_c study in $\eta_c \rightarrow \varphi \phi \phi \rightarrow 2 (K^+K^-)$ decay 20.03.2024