РЕАЛИЗАЦИЯ ОБРАБОТКИ ДАННЫХ МАЛОУГЛОВОГО РАССЕЯНИЯ С ИСПОЛЬЗОВАНИЕМ ВЕБ- И ПАРАЛЛЕЛЬНЫХ СРЕДСТВ ФРЕЙМВОРКА ROOT

А. Г. Соловьев¹, <u>Т. М. Соловьева¹</u>, Е.В. Земляная^{1,2} ¹ ЛИТ ОИЯИ, Дубна, Россия ²Государственный университет «Дубна», Дубна, Россия

Исследование структуры везикулярных систем

Метод малоуглового рассеяния рентгеновских частиц и нейтронов позволяет измерить интенсивность рассеяния при малых величинах модуля вектора рассеяния, существенно меньших межатомных расстояний. Метод МУРН может решать следующие задачи:

- 1. Изучение механизмов клеточного транспорта:
 - 1) адресной доставки лекарств к определенным тканям и клеткам.
 - 2) транспортировки активных компонентов, входящих в состав косметического средства.
- 2. Диагностика различных заболеваний.
- 3. Общие исследования структуры и свойств липидных мембран и везикулярных систем

Исследование структуры везикулярных систем

Везикулы

- ✤ R от 100 до 1000 ангстрем
- * мембранно-защищённые объекты,
- ✤ сферическая форма чаще всего,
- граница липидный слой.

Везикула может присоединяться к внешней мембране, сливаться с ней и передавать своё содержимое в пространство других клеток.

Исследование структуры везикулярных систем

Фосфолипиды

- Оболочка везикул представляет собой бислой, состоящий из липидных молекул, имеющих гидрофильную полярную головку и длинные гидрофобные углеводородные цепочки.
- ✤ Все неполярные углеводородные «хвосты» находятся в центральной части мембраны,
- Все полярные головки располагаются в наружных областях мембраны, соприкасаясь с молекулами воды (раствора) как снаружи, так и внутри везикулы.

Метод разделенных форм-факторов

Дифференциальное сечение рассеяния на монодисперсной популяции однослойных везикул

 $\frac{d\Sigma}{d\Omega}(q)_{mon} = nF_s(q, R)F_b(q, \rho)S(q, R), \qquad R >> d$

F_s – форм-фактор сферической везикулы с бесконечно тонкой толщиной бислоя, зависящий только от радиуса R,

 $F_{\rm b}$ – форм-фактор симметричного липидного бислоя, зависящий только от толщины бислоя d,

- q модуль вектора рассеяния,
- n число везикул в единице объема,

S≈1 – структурный фактор, отражающий взаимодействие везикул в популяции.

Метод разделенных форм-факторов

$$F_{s}(q,R) = \left(4\pi \frac{R}{q} \sin(qR)\right)^{2}$$
$$F_{b}(q,\rho) = \left(\int_{\frac{-d}{2}}^{\frac{d}{2}} \Delta\rho(x) \cos(qx) dx\right)^{2}$$

Здесь $\Delta \rho(x)$ – разность плотности длины рассеяния липидного бислоя везикулы (ρ) и плотности длины рассеяния окружающей жидкости (ρ_0).

Полидисперсность радиуса везикул описывается распределением Шульца

$$G(R, \langle R \rangle) = \frac{R^m}{m!} \left(\frac{m+1}{\langle R \rangle}\right)^{m+1} \exp\left[-\frac{(m+1)R}{\langle R \rangle}\right] -$$

Метод разделенных форм-факторов

Макроскопическое сечение для полидисперсной популяции везикул среднего радиуса <R> при Rmin=10, Rmax=1000.

$$\frac{d\Sigma}{d\Omega}(\mathbf{q}) = \frac{\int_{\mathrm{R_{min}}}^{\mathrm{R_{max}}} \frac{d\Sigma}{d\Omega} (\mathbf{q}, \mathbf{R}, <\mathbf{R}>)_{mon} \cdot G(\mathbf{R}, <\mathbf{R}>)dR}{\int_{\mathrm{R_{min}}}^{\mathrm{R_{max}}} G(\mathbf{R}, <\mathbf{R}>)dR}$$

Макроскопическое сечение, скорректированное с учетом разрешения спектрометра и некогерентного фона

$$\frac{\mathrm{d}\Sigma}{\mathrm{d}\Omega}(q)_{cor} = \frac{\mathrm{d}\Sigma}{\mathrm{d}\Omega}(q) + \frac{1}{2}\Delta^2 \frac{\mathrm{d}^2}{\mathrm{d}q^2} \left[\frac{\mathrm{d}\Sigma}{\mathrm{d}\Omega}(q) \right] + I_b,$$

где Δ^2 – второй момент функции разрешения спектрометра, а I_b - фон.

Функции плотности р для димеристоила фосфатидилхолина в тяжелой воде

- Модель box однородная структура поперек бислоя: $\rho = \rho_m$.
- Гидрофобно-гидрофильная модель hh учитывает разницу между рассеянием в области полярных головок на границах бислоя (гидрофильная область) и в центральной области углеводородных цепочек (гидрофобная область).
- Ступенчатая модель step учитывает различие между рассеянием в области полярных головок и углеводородных цепочек и предполагает, что молекулы раствора проникают только в область полярных головок бислоя на краях бислоя.

Фитирование экспериментальных данных

Параметры подгоняются под экспериментальные данные МУРН путем минимизации невязки между экспериментальными и теоретическими значениями МУРН. Здесь $\delta(q_i)$ – ошибки экспериментальных данных; N – число экспериментальных точек; k – количество фитируемых параметров.

$$\chi^{2} = \frac{1}{N-k} \sum_{i=1}^{N} \left(\frac{\frac{d\Sigma}{d\Omega}(q_{i}) - \frac{d\Sigma}{d\Omega}(q_{i})_{exper}}{\delta(q_{i})} \right)$$

Параметры

- R радиус везикулы
- d толщина бислоя
- т коэффициент полидисперсности
- n число везикул в единице объема

*I*_{*b*} - фон

ρ_{*m*}- однородная плотность мембраны

*ρ*_{*PH*} - плотность в области полярных голов

D – толщина гидрофобной области

Фиксированные значения

 $\rho_0 = 6.37 \times 10^{+10}$ – плотность длины рассеяния на окружающем мембрану растворе $\rho_{CH} = -0.36 \times 10^{+10}$ – плотность длины рассеяния в области углеводородных цепочек 12.04.2024 Параллельные вычислительные технологии (ПаВТ 2024)

< (9) 🖒 🔺 fitter.jinr.ru			Fitter	🔋 🕑 125 % 🗄 Свернуть 🗸	
Data: DMPH.dat Func: box	· · ·	Поиск Поиск	ROOT Canvas Editor Console Help		
General Minir General Minir Minuit Mir GSL Ge Method MIGRAD Settings Use ENTER key to v Reset button to set Error Definition (def Max tolerance (pre- Max number of iter Print Options	nization Pars nuit2 Fumili netics validate a new valu the defaults. fault = 1) cision) ations:	Advanced ue or click on 1 0,01 0	<pre> 1 #include <tf1.h> 2 3 { F1 *getFCN() 4 { (R007::EnableImplicitMT(); auto I_m = [&](Double_t *x, Double_t *p) { Int_t NumberPoints; double q = x{0}; double q = x{0}; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = p[0]; double t, d, m, rho, n, Ib; R = noton = noton, noton, n, Ib; return pow(r, m) / TMath::Factorial(m) * pow((m + 1) / R, m + 1) * exp(-(m + 1) * r / R); j; auto sig = [&](const Double_t & & anoton = t, anoton, more recore t, d, d, d, d, (2); return n * p1 * p1 * p2 * p2; j; auto numerator = [&](double xx) { return n sig(q, xx) * G(xx); j; douth numerator = [&](double xx) { return sig(q, xx) * G(xx); j; douth, for the sindet, for the sign(</tf1.h></pre>		
• Default 🔿 Ve	erbose 🔵 Quiet		<pre>37 37 38 auto denominator = [&](double xx) 39 { 40 return G(xx); 41 }; 42 Double_t Rmin = 100; 43 Double_t Rmax = 1000; 44 45 - auto trapezoidalIntegral = [](double a, double b, int n, const std::function<double (double)=""> &f) { </double></pre>		
Clear		Fit		Save	

< <i>(i) C (A) fitter.jinr.ru</i>		Fitter	🗩 🔎 125 % 🗄 🔁 🛓
Data: DMPH.dat \checkmark Func: box \checkmark	Поиск Поиск	ROOT Canvas Editor Console Help	
General Minimization Pars General Minimization Pars Library Minuit Minuit2 GSL Genetics Method MIGRAD Settings Use ENTER key to validate a new value Reset button to set the defaults. Error Definition (default = 1) Max tolerance (precision) Max number of iterations: Print Options Image: Default Options	Advanced e or click on 1 0,01 0	Minimizer is Minuit2 / MigradChi2=78.7757NDf=64Edm=1.26101e-07NCalls=974R=264.602 +/-3.52212d=36.8715 +/-0.13152m=8.22704 +/-0.525326rho=5.27021e-06 +/-8.71571e-08n=2.77343e-10 +/-9.22343e-12lb=1.42314e-10 +/-8.30505e-12Minimizer is Minuit2 / MigradChi2=78.7757NDf=64Edm=1.26101e-07NCalls=974R=264.602 +/-3.52212d=36.8715 +/-0.13152m=8.22704 +/-0.525326rho=5.27021e-06 +/-8.71571e-08	
		n = 2.77343e-10 +/- 9.22343e-12 lb = 1.42314e-10 +/- 8.30505e-12	
Clear	Save Fit	Real time 0:00:19, CP time 138.880	

Распараллеливание процесса фитирования

Параллельные вычислительные технологии (ПаВТ 2024)

Параметры фитирования

Параметры	Значения для модели box	Значени	я для модели hh	Значени	ıя для модели step
χ^2	1,23	1.058		1.056	
R, Å	264,6 ± 3,5	263.16	± 5	263.2	<u>+</u> 5
d, Å	36,9 ± 0,13	41.5	± 0.4	41.2	± 1.3
m	8,2 ± 0,5	8.2	\pm 0.5	8.2	\pm 0.5
п, см ⁻³	$(2,7 \pm 0,09) \times 10^{+14}$	(1.98	\pm 0.16) × 10 ⁺¹⁴	(2.23	\pm 0.21) × 10 ⁺¹⁴
I_b , см $^{-1}$	$(1,42 \pm 0.08) \times 10^{-2}$	(1.26	\pm 0.12) × 10 ⁻²	(1.26	\pm 0.12) × 10 ⁻²
$ ho$, см $^{-2}$	$(5,27 \pm 0,09) \times 10^{+10}$			(2.19	\pm 0.54) × 10 ⁺¹⁰
D, Å		28	± 2.4	18,2	± 0.99

Результаты фитирования спектров МУРН для моделей hh и step

Модель hh

Модель step

Параллельные вычислительные технологии (ПаВТ 2024)

Зависимость коэффициента ускорения от числа потоков

Заключение

- ✤ Приложение FITTER_WEB успешно апробировано для анализа структуры полидисперсных везикулярных систем на основе обработки данных малоуглового рассеяния.
- Получены характеристики полидисперсной популяции однослойных везикул димеристоила фосфатидилхолина в тяжелой воде – радиус, коэффициент полидисперсности, число везикул в единице объема, толщина мембраны d и толщина гидрофобной области D, а также фон.
- ✤ Использована встроенная в ROOT неявная многопоточность, благодаря чему эффективность вычислений возросла в несколько раз.

Спасибо за внимание!