

Определение элементного состава руды и угля методом меченых нейтронов

В.Ю. Алексахин¹, **Е.А. Разинков²**, Ю.Н. Рогов^{1,2}, М.Г. Сапожников^{1,2}

¹Объединенный институт ядерных ис*с*ледований, Дубна, Россия

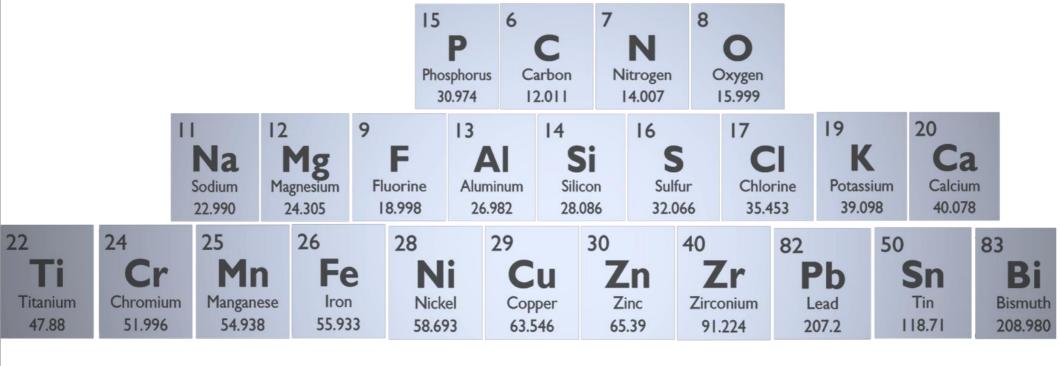
²000 «Диамант», Дубна, Россия

Что за сырье идет по конвейеру?

Горнообогатительные предприятия Угольная отрасль, ТЭЦ Металлургические комбинаты Цементные заводы

- Отсутствие оперативной постоянной информации об элементном составе сырья на конвейере
- Большие отклонения показателей качества продукта от заданных значений
- Перерасход топлива и корректирующих добавок
- Нерепрезентативный долгий хим. анализ

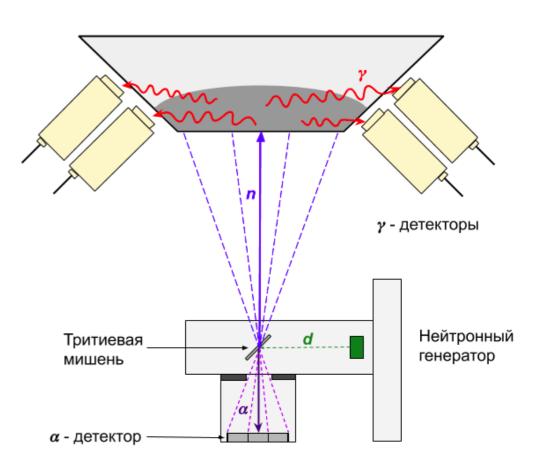
Как это решается сейчас: Подготовка микропробы Хим. Анализ Результат через 4 часа+



Актуальность темы

- ✓ Метод меченых нейтронов (ММН) позволяет проводить анализ вещества, движущегося по конвейеру в режиме реального времени, без какого-либо отбора проб.
- ✓Для градуировки поточных анализаторов и исследования возможностей ММН была создана измерительная установка, имитирующая поточный анализатор.

Определяются концентрации 25 элементов



Метод меченых нейтронов

- ❖ Быстрые нейтроны (14,1 МэВ)
- Реакция $d + {}^{3}H \rightarrow {}^{4}He + n$
- Реакция неупругого рассеяния:

$$(n, n'\gamma)$$

Возможность осуществлять совпадения между сигналами
α-детектора и γ-детекторов.

Описание измерительного стенда

Нейтронный модуль

- ✓ Портативный нейтронный генератор ИНГ-27 со встроенным 9-пиксельным α-детектором.
- ✓ Система из γ-детекторов на основе кристаллов BGO.

Шкаф с электроникой

- ✓ Система сбора данных.
- ✓ Блок питания детекторов и нейтронного генератора.

Перемещаемая модель конвейера

- ✓ Металлический каркас длиной 4 м.
- ✓ Резиновая конвейерная лента (ширина 1200 мм, толщина 16 мм).

Описание измерительного стенда – Нейтронный модуль

- ✓ Портативный нейтронный генератор ИНГ-27.
- ✓ Кремниевый α-детектор матрица 3х3 с размером пикселя 10х10 мм, на расстоянии 62 мм от тритиевой мишени.
- ✓ Система из 14 γ-детекторов на основе кристаллов ВGO (диаметром 76 мм и толщиной 65 мм).



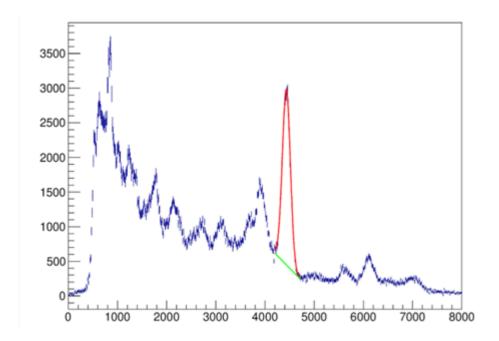
Нейтронный генератор

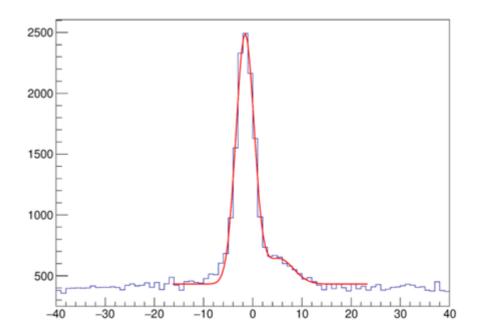
- Нейтронный генератор ИНГ-27 производства ФГУП ВНИИА им. Н.Л.Духова
- $I = 5 \times 10^7 \text{ c}^{-1}$
- Macca 8 кг
- Высота 300 мм
- Альфа-детектор матрица3х3 (10х10 мм)

Гамма-детекторы

- Тип сцинтиллятора BGO
- Размер сцинтиллятора 76х65 мм
- Регистрируемые энергии 0,5-11 МэВ
- Рабочий диапазон температур от +5 до +50°
- Macca 3,4 кг
- Габаритные размеры 89х265 мм
- Фотоэлектронный умножитель

R6233 фирмы Hamamatsu

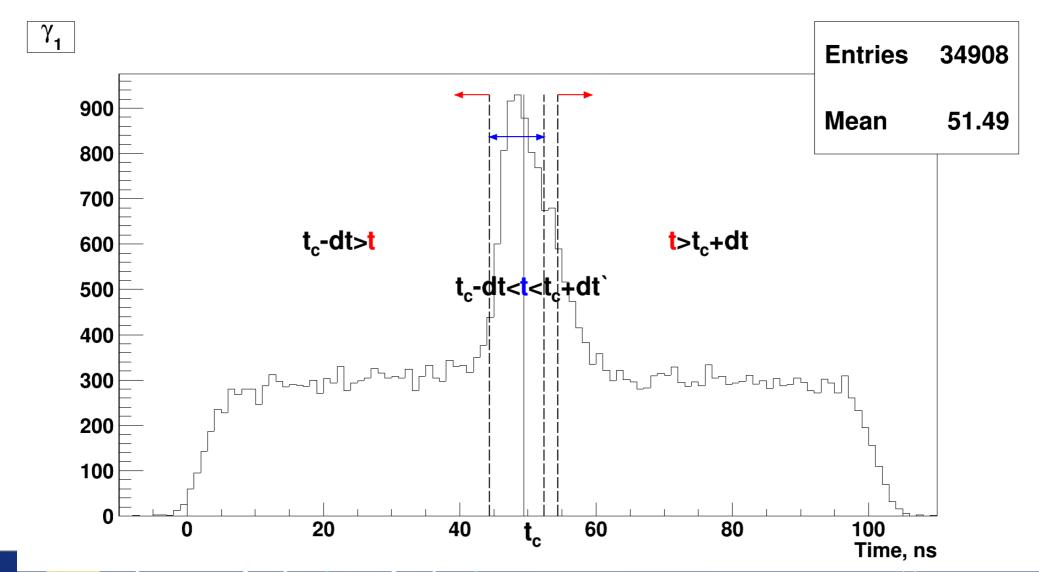


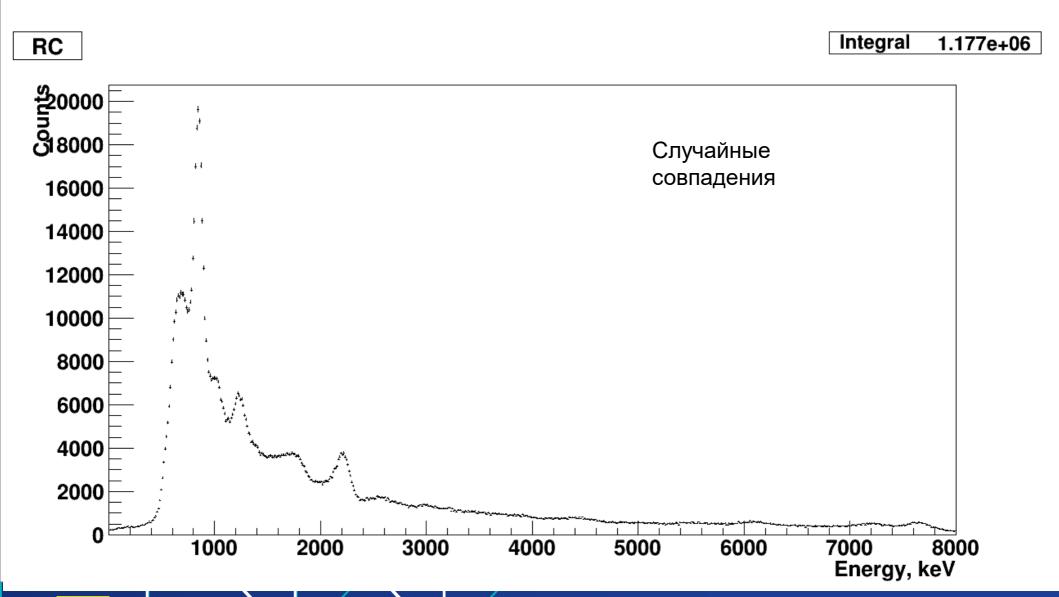


Описание измерительного стенда — Энергетическое и временное разрешение

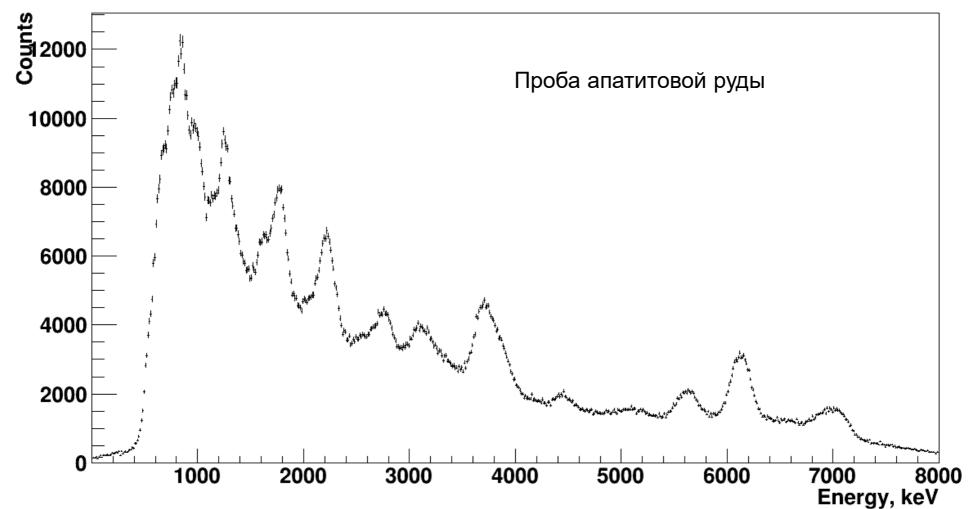
✓ Энергетическое разрешение всей системы детекторов составило $\Gamma_{\rm E} = (4.1 \pm 0.1)$ % на линии 4,44 МэВ.

✓ Временное разрешение системы (α - γ)— совпадений, усредненное по всей совокупности γ -детекторов, составило $\Gamma_t = 5.2 \pm 0.1$ нс.





Характерное временное распределение


Энергетический спектр случайных совпадений

Энергетический спектр для временного интервала

1.995e+06

Описание спектра образцов

Энергетический спектр представляется в виде спектров отдельных гаммалиний, спектров континуума и спектра фона:

$$F(E) = \sum_{j} N_{j} \left(\sum_{i=1}^{i=n_{j}} \sigma_{ij}(E) P_{ij}(E) + R_{j}^{\text{Cont}} F_{j}^{\text{Cont}}(E) \right) + \text{BG}(E)$$

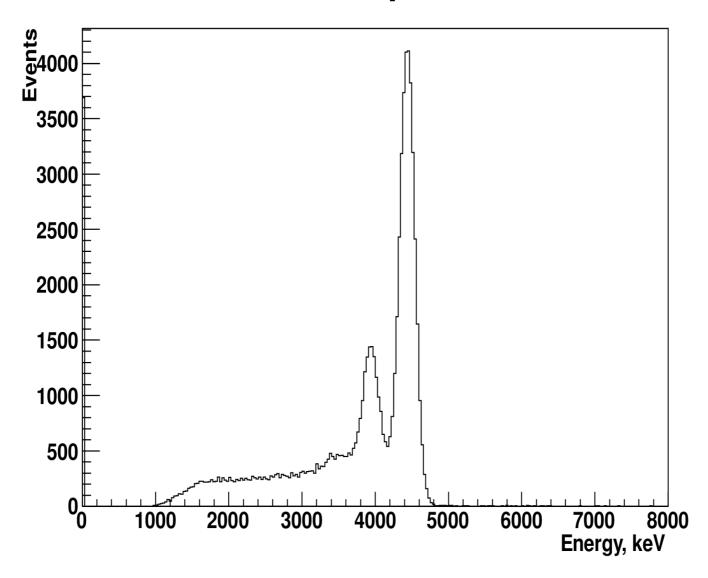
<u>где N_i </u> – параметр, определяющий содержание элемента j в образце, причем данный параметр пропорционален числу атомов элемента в образце и является единым для всех гамма-линий і элемента і;

n_i – количество гамма-линий і у элемента j;

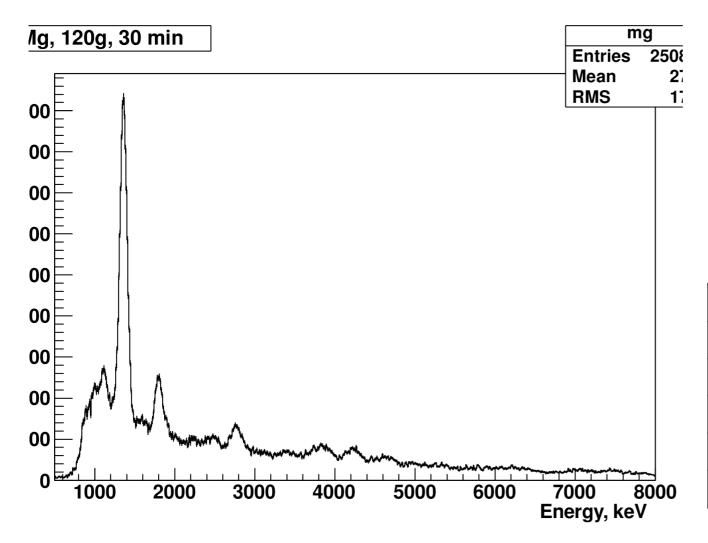
 $\sigma_{ii}(E)$ — сечение рождения гамма-квантов с энергией E, соответствующей гамма-линии i, при взаимодействии нейтрона с элементом і;

ядер, кроме легчайших;

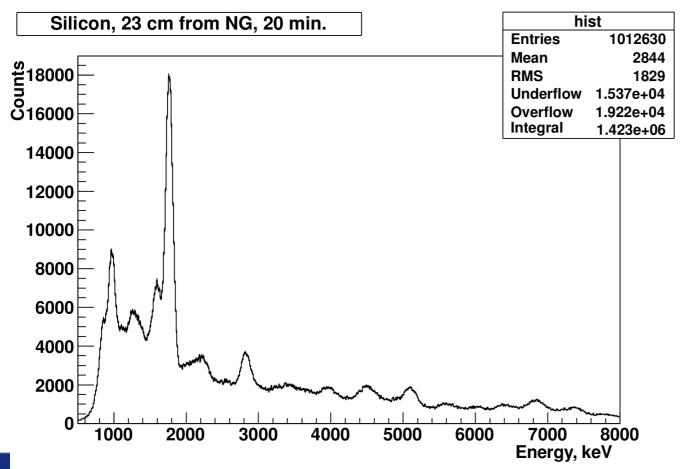
 $\mathbf{R}^{\mathbf{Cont}}_{\ \mathbf{i}}$ – нормировочный коэффициент для спектра континуума;


 $BG(E)=A \cdot exp^{-BE} - функция фона,$

А и В – параметры подгонки.

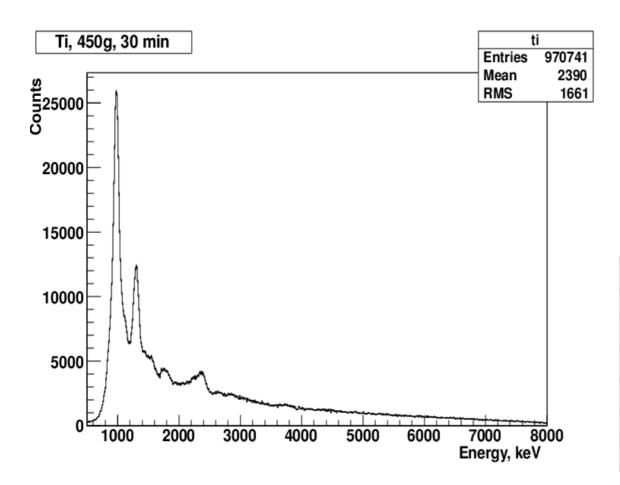

Углерод

Магний



1369 кэВ	450 мб
1809 кэВ	81 мб
2770 кэВ	45 мб
3867 кэВ	30 мб
4239 кэВ	30 мб
4640 кэВ	22 мб

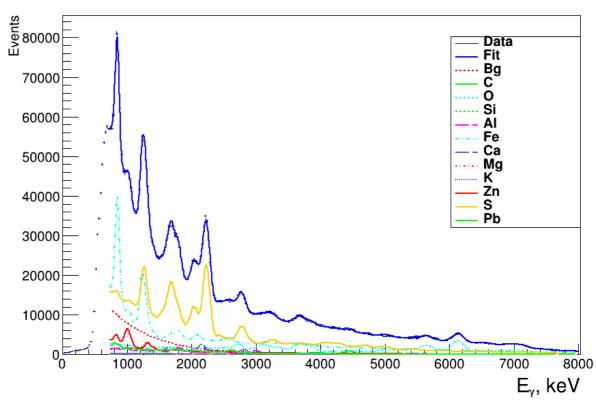
Кремний



1589 кэВ	24 мб
1779 кэВ	403 мб
2839 кэВ	59 мб
5100 кэВ	37 мб
6879 кэВ	36 мб

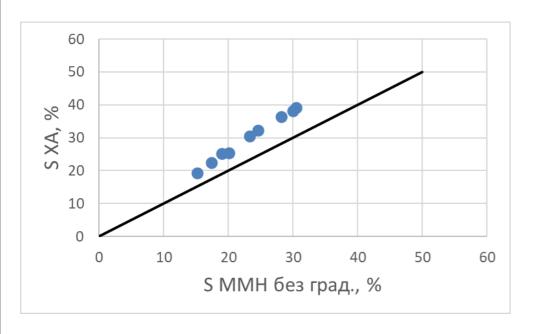
Титан

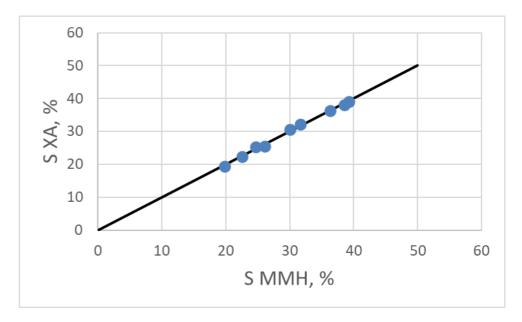
984 кэВ	666 мб
1312 кэВ	238 мб
1437 кэВ	49 мб
1555 кэВ	32 мб
1762 кэВ	23 мб
2240 кэВ	32 мб
2375 кэВ	54 мб



Спектр полиметаллической руды (Zn,S,Fe)

Месторождение Озерное Проба измерялась без пробоподготовки Масса пробы 30 кг





Спектр полиметаллической руды – градуировка на примере серы

$$X_{corr} = A * X_{raw} + B$$

Погрешность измерений

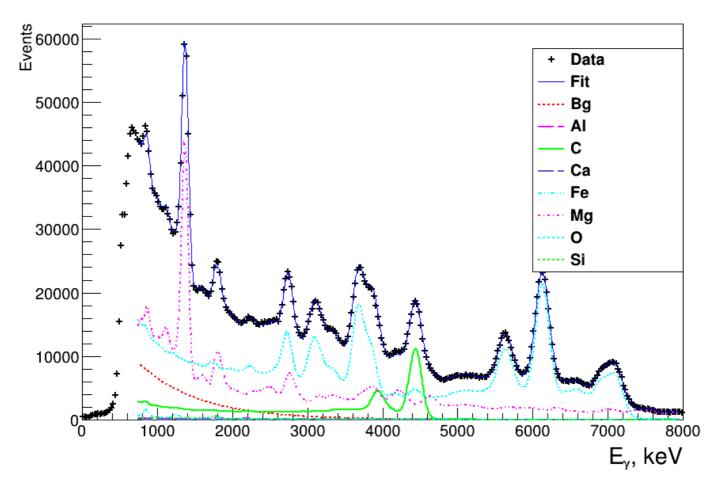
Погрешность определения каждого элемента определяется путем многократного измерения пробы (12 измерений каждое длительностью 20-30 мин) и расчета среднеквадратической погрешности измерений после градуировки:

$$\sigma_r^{\text{a6c}} = \sqrt{\frac{\sum_i (C_i - C)^2}{n - 1}}$$

$$\sigma_r^{\text{OTH}} = 100\% \times \sigma_r^{\text{afc}}/C$$

где n — число измерений, C — среднее значение результатов ММН по всем повторным измерениям, C_i — результата ММН в i-измерении.

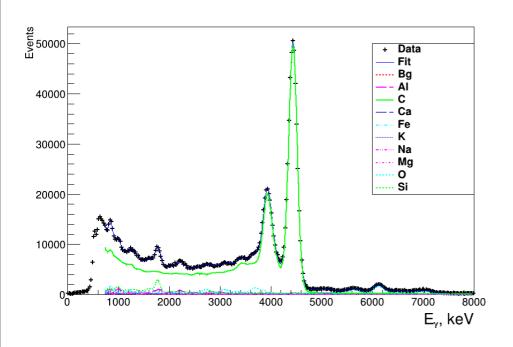
Погрешность измерений

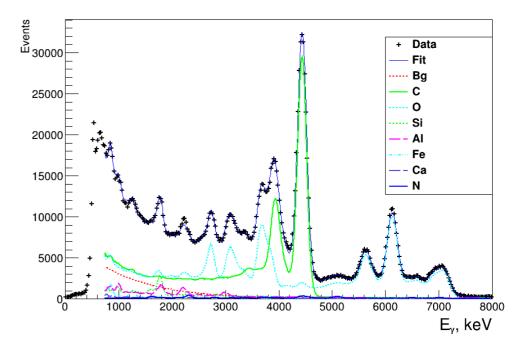

Полиметаллическая руда

	Al	Fe	Pb	S	Zn
Диапазон содержаний, %	0,6-2,0	13,0-34,0	1,0-2,5	20,0-40,0	4,0-30,0
C, %	1,33	28,55	1,71	29,97	7,02
СКОабс, %	0,19	0,43	0,52	0,27	0,28
СКОотн, %	14,09	1,53	31,32	0,92	4,36

Спектр магнезита (Mg)

ООО Магнезит Проба измерялась без пробоподготовки Масса пробы 30 кг


Погрешность измерений


Магнезит

	CaO	MgO	SiO ₂	
Диапазон содержаний, %	2,0-4,0	43,0-48,0	1,0-3,0	
C, %	3,06	44,13	2,02	
СКОабс, %	0,71	0,54	0,21	
СКОотн, %	26,88	1,22	10,99	

Спектр кокса и угля

Кокс – НЛМК, Уголь - БЭК Проба измерялась без пробоподготовки Масса пробы 30 кг

Погрешность измерений

Кокс

	Al_2O_3	CaO	Fe ₂ O ₃	MgO	SiO ₂
Диапазон содержаний оксидов в золе, %	25,0-28,0	4,0-5,0	6,0-7,0	1,0-2,0	48,0-54,0
C, %	25,88	4,29	6,54	0,96	53,49
СКОабс, %	0,90	0,41	0,79	0,40	1,05
СКОотн, %	3,48	9,46	12,02	41,87	1,97

Погрешность измерений

Уголь

	C, %	, % Ad, %	
Диапазон содержаний, %	50,0-60,0	14,0-33,0	0,8-2,0
C, %	56,7	18,52	1,63
СКОабс, %	0,20	0,52	0,63
СКОотн, %	0,35	2,80	39,16

Выводы - 1

СКОабс	Al ₂ O ₃ , %	CaO, %	Fe, %	MgO, %
Диапазон содержаний, %	15,0-20,0	2,0-4,0	13,0-34,0	43,0-48,0
MMH , %	0,24	0,71	0,43	0,54
CB OMNI, % Thermo Fisher *	0,60	0,42		0,58
NITA II **, %	0,5			
GEOSCAN ***, %	0,45	0,95	0,80	0,60
XENA [4], %	0,38	0,49	0,23	
РАТЭК, %	0,3	0,4	0,4	0,3
COALSCAN [5], %				

^{*}Д.И.Шарков, Цемент и его применения, №3, стр.90, 2015.

^{**} Методика поверки. Анализатор элементного состава радиоизотопный NITA II, МП-33-241-2018.

^{***} H.Kurth, D.Griffiths, Suitability of Geoscan-M elemental analyser for phosphate rock (Russian ore, 3-10% P_2O_5) ECI Symposium Series, (2015).

⁴C.S.Lim et al, An on-belt elemental analyser for the cement industry, Appl. Radiation and Isotopes 54 (2001) 11.

⁵COALSCAN 9500X, Scantech

Выводы - 2

СКОабс	P ₂ O ₅ , %	SiO ₂ , %	Зольность, %	S, %	Zn, %	Pb, %
Диапазон содержаний, %	0,5-20	1,0-3,0	3,0-10,0	20,0-40,0	4,0-30,0	1,0-2,5
MMH , %	0,25	0,21	0,25	0,27	0,28	0,52
CB OMNI, % Thermo Fisher		0,94				
NITA II **, %	0,5					
GEOSCAN ***, %	0,38	0,66		0,1%(0-1%)		
XENA [4], %		0,52				
РАТЭК, %		0,5				
COALSCAN [5], %			0,35			

^{*}Д.И.Шарков, Цемент и его применения, №3, стр.90, 2015.

⁵COALSCAN 9500X, Scantech

^{**} Методика поверки. Анализатор элементного состава радиоизотопный NITA II, МП-33-241-2018.

^{***} H.Kurth, D.Griffiths, Suitability of Geoscan-M elemental analyser for phosphate rock (Russian ore, 3-10% P_2O_5) ECI Symposium Series, (2015).

⁴C.S.Lim et al, An on-belt elemental analyser for the cement industry, Appl. Radiation and Isotopes 54 (2001) 11.

Выводы - 3

- Создана измерительная установка, определяющая элементный состав самых различных веществ.
- Подписано соглашение между ОИЯИ и ООО Диамант о совместной деятельности. Измерительная установка передана в совместное пользование.
- Нейтронные источники могут быть использованы не только для элементного анализа веществ, но и для измерений, связанных с радиационной безопасностью.

Радиационная стойкость материалов

- Облучение материалов для эксперимента MPD
- Флюенс: $\Phi = 3,3 \ 10^9 \, \text{cm}^{-2}$ за 24 часа

