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Tracking on CMS : Tasks and Challenges
Conditions: 𝐿𝑖𝑛𝑠𝑡 ~10

34 𝑐𝑚−2𝑠−1

• Bunch crossing (BX) every 25 ns 
• ~ 20-30 pp-collisions per BX
• ~ 30 charged particles per pp-collision

~600-900 charged particles per 
BX or 𝟏𝟎𝟏𝟏 per second
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Tracking on CMS : Tasks and Challenges
Conditions: 𝐿𝑖𝑛𝑠𝑡 ~10

34 𝑐𝑚−2𝑠−1

• Bunch crossing (BX) every 25 ns 
• ~ 20-30 pp-collisions per BX
• ~ 30 charged particles per pp-collision

~600-900 charged particles per 
BX or 𝟏𝟎𝟏𝟏 per second

Requirements: fast and accurate 
• High efficiency 
• Low fake rate
• Precise track parameters
• Quickly!
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Tracks Reconstruction. Muon Case
Common steps of reconstruction:
1. Clustering and Seeding – using combination

of hits to provide track candidate
2. Track building – adding compatible hits to

predicted trajectory. Updating parameters
3. Final fit – adding vertex, taking into account

detector defects, smoothing trajectory, final
estimation of parameters and uncertainties
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Tracks Reconstruction. Muon Case
Common steps of reconstruction:
1. Clustering and Seeding – using combination

of hits to provide track candidate
2. Track building – adding compatible hits to

predicted trajectory. Updating parameters
3. Final fit – adding vertex, taking into account

detector defects, smoothing trajectory, final
estimation of parameters and uncertainties

Muon reconstruction algorithms:
• Standalone – muon chambers only
• Tracker– silicon tracker only
• Global– muon chambers and silicon tracker

Muon Reconstruction efficietncy ~99%!

JINST 15 (2020) P02027
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How to Find the Right Muon. Isolation

See reports:
Y. Korsakov
K. Slizhevskiy
S. Shmatov
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∆𝑅 = ∆𝜑2 + ∆𝜂2< 0.4

σ 𝑝𝑇
∆𝑅−𝑝𝑇

𝜇

σ 𝑝𝑇
∆𝑅 <0.15

• Tracker isolation – only silicon tracker is used
• Combined isolation – silicon tracker and 

calorimeters are used
• Particle flow isolation – all subdetectors are used 
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∆𝑅 = ∆𝜑2 + ∆𝜂2< 0.4

σ 𝑝𝑇
∆𝑅−𝑝𝑇

𝜇

σ 𝑝𝑇
∆𝑅 <0.15

• Tracker isolation – only silicon tracker is used
• Combined isolation – silicon tracker and 

calorimeters are used
• Particle flow isolation – all subdetectors are used 

PoS LHCP2018 (2018) 068

Iso Efficiency ~87-99%
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Triggering

Conditions: 𝐿𝑖𝑛𝑠𝑡 ~10
34 𝑐𝑚−2𝑠−1

• 40 MHz
• ~400 Tb per second

Extremely overloaded!
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Level 1 Trigger (L1)

Regional trigger –
ranking of objects in one 

detector subsystem

Local trigger – collect 
signals from muon stations

Global trigger– making  
decision, forming data stream

High Level Trigger (HLT)

40 MHz
30 kHz

Make a decision

Fitting

Apply Isolation Criteria

Vertex snap

Use information from 
silicon tracker

100 Hz

100 Mb/s400 Tb/s 
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detector subsystem
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Global trigger– making  
decision, forming data stream

High Level Trigger (HLT)

40 MHz
30 kHz

Make a decision

Fitting

Apply Isolation Criteria

Vertex snap

Use information from 
silicon tracker

100 Hz

100 Mb/s400 Tb/s 

Trigger Efficiency ~93-98%

JINST 15 (2020) P02027
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Muon Identification
Electroweak precision measurements requires high quality muon tracks.
Special Identification algorithms are used 

Tight Muon
The candidate is reconstructed as a 
Global Muon

χ2/ndof of the global-muon track fit 
< 10 To suppress hadronic punch-

through and muons from decays in 
flight

At least one muon chamber hit 
included in the global-muon track 
fit

Muon segments in at least two 
muon stations

To suppress accidental track-to-
segment matches

Its tracker track has transverse 
impact parameter dxy < 2 mm w.r.t. 
the primary vertex, dz < 5 mm

To suppress cosmic muons and 
further suppress muons from decays 
in flight and tracks from pileup

Number of pixel hits > 0.
number of tracker layers with hits >5

To guarantee a good 
pT measurement, for which some 
minimal number of measurement 
points in the tracker is needed 22
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The candidate is reconstructed as a 
Global Muon

χ2/ndof of the global-muon track fit 
< 10 To suppress hadronic punch-

through and muons from decays in 
flight

At least one muon chamber hit 
included in the global-muon track 
fit

Muon segments in at least two 
muon stations

To suppress accidental track-to-
segment matches

Its tracker track has transverse 
impact parameter dxy < 2 mm w.r.t. 
the primary vertex, dz < 5 mm

To suppress cosmic muons and 
further suppress muons from decays 
in flight and tracks from pileup

Number of pixel hits > 0.
number of tracker layers with hits >5

To guarantee a good 
pT measurement, for which some 
minimal number of measurement 
points in the tracker is needed

Identification efficiency >95%!

PoS LHCP2018 (2018) 068
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Conclusions
Existing methods of muon tracks
reconstruction, measuring its parameters
and background suppression demonstrate
high efficiency and allow to successfully
perform precision measurements with
muons on CMS

JHEP 12, 059
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New technics and algorithms (like mkFIT ,
DNN etc.) are coming. New methods of
registration exotic experimental signatures
is under the process
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