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Tracking on CMS: Tasks and Challenges
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Tracklng on CMS : Tasks and Challenges

Conditions: Lo ~103* cm™2s71
 Bunch crossing (BX) every 25 ns

* ~20-30 pp-collisions per BX

» ~ 30 charged particles per pp-collision

~600-900 charged particles per
BX or 101! per second
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Conditions: Lo ~103* cm™2s71
 Bunch crossing (BX) every 25 ns

» ~20-30 pp-collisions per BX

» ~ 30 charged particles per pp-collision

~600-900 charged particles per
BX or 101! per second

J CMS Experiment at the LHC, CERN
~ Data recorded: 2015-Jun-03 08:48:32.279552 GMT
Run / Event / LS: 246908 / 77874559 / 86

Requirements: fast and accurate
 High efficiency

* Low fake rate

* Precise track parameters

* Quickly!




Tracks Reconstruction. Muon Case

Common steps of reconstruction: L. Hit clustering 2. Track seeding
1. Clustering and Seeding - using combination -/
. . . 7N
of hits to provide track candidate - {Iﬁ
2. Track building - adding compatible hits to /

predicted trajectory. Updating parameters

3. Track building 4. Track fitting

3. Final fit - adding vertex, taking into account / /— ///-
detector defects, smoothing trajectory, final Ay

////////

estimation of parameters and uncertainties



Tracks Reconstruction. Muon Case

Common steps of reconstruction:

1. Hit clustering 2. Track seeding
1. Clusterlng aI.ld Seeding - using combination “?A Yy
of hits to provide track candidate N - |
2. Track building - adding compatible hits to /
predicted trajectory. Updating parameters

. . . 4 : 3. Track building 4. Track fitting
3. Final fit - adding vertex, taking into account

detector defects, smoothing trajectory, final (/s f ///-
estimation of parameters and uncertainties o / / / / / //,

1 I |
Oom 1

. I Y 2 T T T
-.:_.g;a?.?’“"gsr((;,;;ﬁt,;, = Muon reconstruction algorithms:
AP\ ) | | « Standalone - muon chambers only
€ nTRe
| I i
// = [

Hadron Superconducting
G Solenoid

ren retum yake Interspersed
w 5"'%"1'5‘6?’



Tracks Reconstruction. Muon Case

Common steps of reconstruction:

1. Clustering and Seeding - using combination
of hits to provide track candidate

Track building - adding compatible hits to

predicted trajectory. Updating parameters

3. Final fit - adding vertex, taking into account
detector defects, smoothing trajectory, final
estimation of parameters and uncertainties
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Common steps of reconstruction: 1. Hit clustering 2. Track seeding
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Tracks Reconstruction. Muon Case

Common steps of reconstruction: 1. Hit clustering 2. Track seeding
1. Clustering and Seeding - using combination “/
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Tracks Reconstruction. Muon Case

Common steps of reconstruction:

1. Clustering and Seeding - using combination o e o T
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How to Find the Right Muon.

See reports:
g X 2 (become two jets) Y. Korsakov
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Muons from QCD are dominate.
Needs to distinguish signal muons. How?
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How to Find the Right Muon. Isolation

N/ ‘ & Muons from QCD are dominate.
‘ See reports: Needs to distinguish signal muons. How?
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Muons from QCD are dominate.

Bee repiis: Needs to distinguish signal muons. How?
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Triggering

Conditions: L;,s ~103* cm™2s71

* 40 MHz
* ~400 Tb per second

Extremely overloaded!
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Triggering
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Triggering

Conditions: L;,s ~103* cm™

* 40 MHz
* ~400 Tb per second

Extremely overloaded!

40 MHz
400 Tb/s

Level 1 Trigger (L1)

Global trigger- making
decision, forming data stream

1

Regional trigger -
ranking of objects in one
detector subsystem

1

Local trigger - collect
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Requirements: few but interesting & quality
» High efficiency
* High purity
* Computing economy

High Level Trigger (HLT)
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Trigger Efficiency ~93-98%
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Muon Identification

Electroweak precision measurements requires high quality muon tracks.

Special Identification algorithms are used

Tight Muon

The candidate is reconstructed as a
Global Muon

¥2/ndof of the global-muon track fit
<10

At least one muon chamber hit
included in the global-muon track
fit

To suppress hadronic punch-
through and muons from decays in

flight

Muon segments in at least two
muon stations

To suppress accidental track-to-
segment matches

Its tracker track has transverse
impact parameter de <2 mm W.I.t.
the primary vertex, d, <5 mm

To suppress cosmic muons and
further suppress muons from decays
in flight and tracks from pileup

Number of pixel hits > o.
number of tracker layers with hits >5

To guarantee a good

pp measurement, for which some
minimal number of measurement
points in the tracker is needed

-------
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Muon Identification

Electroweak precision measurements requires high quality muon tracks.
Special Identification algorithms are used

Tight Muon

The candidate is reconstructed as a
Global Muon
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Efficiency

Data/MC

Identification efficiency >95%!

36.4 o' (13 TeV, 2016)

—
.
—

i B AR - ‘
- CMS Tight Id, p_> 20 GeV ]
1.05— Preliminary —e—Data 1
= MC :

11— 4 /]

[ ® . = —— '_._‘_._p—.—c = -
fas = A Sl ——
0.9f o/ o ]
Z f :
PoS LHCP2018 (2018) 068 '
0.8 eyt L
1.02F
L gl T T — T —e— | T ]
0.98F - - SO
0.96 e e M, 4 —e— —0—5
04— T 05~0 05/1 15 2
muon n



Conclusions

Existing methods of muon tracks
reconstruction, measuring its parameters
and background suppression demonstrate
high efficiency and allow to successfully
perform precision measurements with
muons on CMS
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Conclusions
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