

Searching for dark matter in dilepton production processes at the LHC

The Nuclear Physics Section of the Department of Physical Sciences of the Russian Academy of Sciences

Simplified dark matter scenarios

Generated event samples and leptons selections

Korsakov I., Nuclear Physics Section of DFS of the RAS, April 2024

Distribution by invariant mass

"Published in the Journal of High Energy Physics as doi:10.1007/JHEP07(2021)208."

Upper limits on the ratio $\sigma_{Z'}/\sigma_{Z0}$

Upper limits on the masses of the DM particle

For spin-1 resonances that act as a mediator between SM particles and dark matter (DM), exclusion limits are set in the mass plane of the mediator and DM particles. For large values of m_{DM} , mediator masses below 1.92 (4.64) TeV are excluded in a model where the mediator is a vector (axial vector) with small (large) coupling to leptons. For $m_{DM} = 0$, these limits are reduced to 1.04 and 3.41 TeV, respectively

Upper limits on the masses of the DM particle

Conclusions

- A search for resonant new phenomena in the dilepton invariant mass spectrum in proton-proton collisions at $\sqrt{s} = 13$ TeV corresponding to an integrated luminosity of up to 140 fb⁻¹ has been presented
- Upper limits on the mass of a dark matter particle have been obtained
- For spin-1 resonances that act as a mediator between SM particles and dark matter (DM), exclusion limits are set in the mass plane of the mediator and DM particles. For large values of m_{DM} , mediator masses below 1.92 (4.64) TeV are excluded in a model where the mediator is a vector (axial vector) with small (large) coupling to leptons. For $m_{DM} = 0$, these limits are reduced to 1.04 and 3.41 TeV, respectively
- No significant deviation from SM expectation is observed
- Currently, research is being conducted within this scenario with dark matter based on open CMS data.

Thanks for your attention!

Back up, electron analysis

Table 1: Data sets, as well as corresponding run-ranges, luminosities, and Json files in 2016, 2017, and 2018.

Dataset Name	Run Range	L (fb ⁻¹)		
V - DoubleEC CincleElectron CinclePhoton and CincleMuon				
$\chi = D00016EG, SingleElectron, SingleFloton, /\chi/Run2016B-17Jul2018 ver2-v1/MINIAOD$	272007-275376	5 75		
/X/Run2016C-17Jul2018-v1/MINIAOD	275657-276283	2 57		
/X/Run2016D-17Jul2010-V1/WINIACD	276315-276811	4 24		
/X/Run2016E-17Jul2010-V1/WINDAOD	276831-277420	4.03		
/X/Run2016E-17Jul2010-V2/WINNAOD	277772-278808	3.11		
/X/Run2016G-17Jul2018-v1/MINIAOD	278820-280385	7.58		
/X/Run2016H-17Jul2010-V1/MINIAOD	280919-284044	8.65		
Run 2016	275657-284044	35.92		
ISON: Cert 271036-284044 13TeV	23Sep2016ReReco Collisions16 ISON txt	00.72		
X = DoubleEG, SingleElectron, SinglePhoton,	and SingleMuon.			
/X/Run2017B-31Mar2018-v1/MINIAOD	297046-299329	4.79		
/X/Run2017C-31Mar2018-v1/MINIAOD	299368-302029	9.63		
/X/Run2017D-31Mar2018-v1/MINIAOD	302030-303434	4.25		
/X/Run2017E-31Mar2018-v1/MINIAOD	303824-304797	9.32		
/X/Run2017F-31Mar2018-v1/MINIAOD	305040-306462	13.54		
Run 2017	297046-306462	41.53		
ISON: Cert_294927-306462_13TeV	_EOY2017ReReco_Collisions17_JSON.txt			
X = EGamma and SingleMuon.				
/X/Run2018A-17Sep2018-v2/MINIAOD	315252-316995	13.70		
/X/Run2018B-17Sep2018-v1/MINIAOD	317080-319310	7.06		
/X/Run2018C-17Sep2018-v1/MINIAOD	319337-320065	6.89		
/X/Run2018D-22Jan2019-v2/MINIAOD	320673-325175	31.74		
Run 2018	315252-325175	59.40		
JSON: Cert_314472-325175_13TeV_17SeptEarly	ReReco2018ABC_PromptEraD_Collisions18	JSON.txt		
Full run2	275657-325175	136.85		

sample	xsection(pb)	xs precision
ZToEE_NNPDF30_13TeV-powheg_M_50_120	1975	NLO
ZToEE_NNPDF30_13TeV-powheg_M_120_200	19.32	NLO
ZToEE_NNPDF30_13TeV-powheg_M_200_400	2.73	NLO
ZToEE_NNPDF30_13TeV-powheg_M_400_800	0.241	NLO
ZToEE_NNPDF30_13TeV-powheg_M_800_1400	1.68E-2	NLO
ZToEE_NNPDF30_13TeV-powheg_M_14000_2300	1.39E-3	NLO
ZToEE_NNPDF30_13TeV-powheg_M_2300_3500	8.948E-5	NLO
ZToEE_NNPDF30_13TeV-powheg_M_3500_4500	4.135E-6	NLO
ZToEE_NNPDF30_13TeV-powheg_M_4500_6000	4.56E-7	NLO
ZToEE_NNPDF30_13TeV-powheg_M_6000_Inf	2.06E-8	NLO
DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8 (for $Z \rightarrow \tau \tau$)	5765.4	NNLO
ST_tW_top_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1/	19.47	app.NNLO
ST_tW_antitop_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1/	19.47	app.NNLO
TTTo2L2Nu_TuneCUETP8M2_ttHtranche3_13TeV-powheg	87.31	NNLO
TTToLL_MLL_500To800_TuneCUETP8M1_13TeV-powheg-pythia8	0.326	NNLO
TTToLL_MLL_800To1200_TuneCUETP8M1_13TeV-powheg-pythia8	3.26E-2	NNLO
TTToLL_MLL_1200To1800_TuneCUETP8M1_13TeV-powheg-pythia8	3.05E-3	NNLO
TTToLL_MLL_1800ToInf_TuneCUETP8M1_13TeV-powheg-pythia8	1.74E-4	NNLO
WWTo2L2Nu_13TeV-powheg	12.178	NNLO
WWTo2L2Nu_Mll_200To600_13TeV-powheg	1.39	NNLO
WWTo2L2Nu_Mll_600To1200_13TeV-powheg	5.7E-2	NNLO
WWTo2L2Nu_Mll_1200To2500_13TeV-powheg	3.6E-3	NNLO
WWTo2L2Nu_Mll_2500ToInf_13TeV-powheg	5.4E-5	NNLO
WZTo3LNu_TuneCUETP8M1_13TeV-powheg-pythia8	4.42965	NLO
WZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8	6.331	NLO
ZZTo2L2Nu_13TeV_powheg_pythia8	0.564	NLO
ZZTo4L_13TeV_powheg_pythia8	1.212	NLO
ZZTo2L2Q_13TeV_powheg_pythia8	1.999	NLO

Table 2: 2016 MC samples (dataset=/*/RunIISummer16MiniAODv3-PUMoriond17-94X_mcRun2_asymptotic_v3*/MINIAODSIM)

sample	xsection(pb)	xs precision	year
ZToEE_NNPDF31_13TeV-powheg_M_50_120	2112.90	NLO	
ZToEE_NNPDF31_13TeV-powheg_M_120_200	20.56	NLO	
ZToEE_NNPDF31_13TeV-powheg_M_200_400	2.89	NLO	
ZToEE_NNPDF31_13TeV-powheg_M_400_800	0.252	NLO	
ZToEE_NNPDF31_13TeV-powheg_M_800_1400	1.71E-2	NLO	
ZToEE_NNPDF31_13TeV-powheg_M_14000_2300	1.37E-3	NLO	
ZToEE_NNPDF31_13TeV-powheg_M_2300_3500	8.178E-5	NLO	
ZToEE_NNPDF31_13TeV-powheg_M_3500_4500	3.191E-6	NLO	
ZToEE_NNPDF31_13TeV-powheg_M_4500_6000	2.787E-7	NLO	
ZToEE_NNPDF31_13TeV-powheg_M_6000_Inf	9.56E-9	NLO	
DYJetsToLL_M-50_TuneCP5_13TeV-amcatnloFXFX-pythia8 (for $Z \rightarrow \tau \tau$)	5765.4	NNLO	
ST_tW_top_5f_NoFullyHadronicDecays_TuneCP5_13TeV-powheg-pythia8	19.47	app.NNLO	2017 and 2018
ST_tW_antitop_5f_NoFullyHadronicDecays_TuneCP5_13TeV-powheg-pythia8	19.47	app.NNLO	2017 and 2018
TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8	87.31	NNLO	2017 and 2018
TTToLL_MLL_500To800_*to*_NNPDF31_13TeV-powheg	0.326	NNLO	2017
TTToLL_MLL_800To1200_*to*_NNPDF31_13TeV-powheg	3.26E-2	NNLO	2017
TTToLL_MLL_1200To1800_*to*_NNPDF31_13TeV-powheg	3.05E-3	NNLO	2017
TTToLL_MLL_1800ToInf_*to*_NNPDF31_13TeV-powheg	1.74E-4	NNLO	2017
WWTo2L2Nu_NNPDF31_TuneCP5_13TeV-powheg-pythia8	12.178	NNLO	2017 and 2018
WWTo2L2Nu_MLL_200To600_NNPDF31_13TeV-powheg	1.39	NNLO	2017
WWTo2L2Nu_MLL_600To1200_v1_NNPDF31_13TeV-powheg	5.7E-2	NNLO	2017
WWTo2L2Nu_MLL_1200To2500_NNPDF31_13TeV-powheg	3.6E-3	NNLO	2017
WWTo2L2Nu_MLL_2500ToInf_NNPDF31_13TeV-powheg	5.4E-5	NNLO	2017
WZTo3LNu_13TeV-powheg-pythia8	4.42965	NLO	2017
WZTo3LNu_TuneCP5_13TeV-powheg-pythia8	4.42965	NLO	2018
WZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8	6.331	NLO	2017 and 2018
ZZTo2L2Nu_13TeV_powheg_pythia8	0.564	NLO	2017
ZZTo2L2Nu_TuneCP5_13TeV_powheg_pythia8	0.564	NLO	2018
ZZTo4L_TuneCP5_13TeV_powheg_pythia8	1.212	NLO	2017
ZZTo4L_TuneCP5_13TeV_powheg_pythia8	1.212	NLO	2018
ZZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8	1.999	NLO	2017 and 2018

Table 3: 2017 MC samples (dataset=/*/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14/MINIAODSIM) and 2018 MC samples (dataset=/*/RunIIAutumn18MiniAOD-102X_upgrade2018_realistic_v15/MINIAODSIM).

Year	path	Runs
2016	HLT_DoubleEle33_CaloIdL_MW	All except runs 276453 to 278822
2010	HLT_DoubleEle33_CaloIdL_GsfTrkIdVL	runs 276453 to 278822
2017	HLT_DoubleEle33_CaloIdL_MW	All
2018	HLT_DoubleEle25_CaloIdL_MW	All

Table 5: Summary of the signal triggers

HLT_DoubleEle33_CaloIdL_MW Et effciency rereco (runBCDEF)

HLT_DoubleEle25_CaloIdL_MW Et effciency 2018 (reRecoABC PromptD)

Variable	Barrel		Endcap	
	Accept	tance sele	ections	
E_T	$E_T > 35 \mathrm{GeV}$ $E_T > 35 \mathrm{GeV}$			
η	$ \eta_{SC} < 1.4442$		$1.566 < \eta_{SC} < 2.5$	
	Identifi	cation se	lections	
isEcalDriven	true		true	
$\Delta \eta_{in}^{seed}$	$ \Delta\eta_{in}^{seed} < 0.004$		$ \Delta\eta_{in}^{seed} < 0.006$	
$\Delta \phi_{in}$	$ \Delta \phi_{in} < 0.06$		$ \Delta \phi_{in} < 0.06$	
H/E	H/E < 1/E + 0.05	5	H/E < 5/E + 0.05	
$\sigma_{i\eta i\eta}$	-		$\sigma_{i\eta i\eta} < 0.03$	
$\frac{E_{1\times 5}}{E_{5\times 5}}, \frac{E_{2\times 5}}{E_{5\times 5}}$	$\frac{E_{1\times 5}}{E_{E\times 5}} > 0.83$ or $\frac{E_{2\times 5}}{E_{E\times 5}}$	> 0.94	-	
Inner lost layer hits	lost hits ≤ 1		lost hits ≤ 1	
Impact parameter, a	$d_{xy} d_{xy} < 0.02$		$ d_{xy} < 0.05$	
	Isolat	tion selec	tions	
EM + had depth 1	$iso < 2 + 0.03E_T +$	-0.28ρ	$iso < 2.5 + 0.28\rho$ ($E_T < 50$ GeV)	
isolation, iso	1		else $iso < 2.5 + 0.03(E_T - 50 \text{ GeV}) + 0.28\rho$	
p_T isolation (V7), is	opt isopt < 5 GeV		isopt < 5 GeV	
	Table 6. Definitions	of HEEI	PID V7.0 selections	
Variable	Barrel	Endcap		
	Acc	eptance se	elections	
E_T	$E_T > 35 \mathrm{GeV}$	$E_T > 35$	GeV	
η	$ \eta_{SC} < 1.4442$	1.566 <	$ \eta_{SC} < 2.5$	
	Iden	tification s	elections	
isEcalDriven	true	true	< 0.000	
$\Delta \eta_{in}^{\text{scen}}$	$ \Delta \eta_{in}^{\text{scall}} < 0.004$	$ \Delta\eta_{in} <$	0.06	
$\Delta \varphi_{in}$ H/E	$ \Delta \varphi_{in} < 0.00$ H/E < 1/E + 0.05	$ \Delta \varphi_{in} \leq H/E < 0$	$(-0.4 + 0.4 n)\rho/E + 0.05$	
σ_{inin}	-	$\sigma_{inin} < 0$.03	
$\frac{E_{1\times5}}{E_{5\times5}}, \frac{E_{2\times5}}{E_{5\times5}}$	$\frac{E_{1 \times 5}}{E_{5 \times 5}} > 0.83$ or $\frac{E_{2 \times 5}}{E_{5 \times 5}} > 0.94$	-		
Inner lost layer hits	lost hits ≤ 1	lost hits	≤ 1	
Impact parameter, d_{xy}	$ d_{xy} < 0.02$	$ d_{xy} < 0$.05	
Isolation selections				
EM + had depth 1	$1so < 2 + 0.03E_T + 0.28\rho$	150 < 2.5	+ $(0.15 + 0.07 \eta)\rho$, $(E_T < 50 \text{ GeV})$ + $0.02(E_T = 50 \text{ GeV}) + (0.15 + 0.07 \mu) = (E_T > 50 \text{ GeV})$	
isolation, 150	isont < 5 CoV	150 < 2.5	+ $0.05(E_T - 50 \text{ GeV})$ + $(0.15 + 0.07 \eta)\rho$, $(E_T > 50 \text{ GeV})$	
p_T isolation (v_T), isopt	isopi < 5 Gev	isopi < c		

Table 7: Definitions of HEEP ID V7.0-2018Prompt selections.

Barrel-Barrel

200 300

.............

200 300

Barrel-Endcap

200 300

200 300

Endcap-Endcap

200 300

200 300

Data

Jets

E Data

Jets

Data

Jets

*

m(ee) [GeV]

Data set	Run range
/SingleMuon/Run2017B-31Mar2018-v1	297050 - 299329
/SingleMuon/Run2017C-31Mar2018-v1	299368 - 302029
/SingleMuon/Run2017D-31Mar2018-v1	302031 - 302663
/SingleMuon/Run2017E-31Mar2018-v1	303824 - 304797
/SingleMuon/Run2017F-31Mar2018-v1	305045 - 306460
/SingleMuon/Run2018A-17Sep2018-v2	315257 – 316995
/SingleMuon/Run2018B-17Sep2018-v1	317080 - 319077
/SingleMuon/Run2018C-17Sep2018-v1	319337 – 320065
/SingleMuon/Run2018D-22Jan2019-v2	320673 - 325172

Table 1: Data sets used in this analysis for 2017 and 2018.

Process	σ (pb)	Order	Events
ZToMuMu_NNPDF31_13TeV-powheg_M_50_120	2112.904	NLO	2863000
ZToMuMu_NNPDF31_13TeV-powheg_M_120_200	20.553	NLO	100000
ZToMuMu_NNPDF31_13TeV-powheg_M_200_400	2.886	NLO	100000
ZToMuMu_NNPDF31_13TeV-powheg_M_400_800	0.2517	NLO	100000
ZToMuMu_NNPDF31_13TeV-powheg_M_800_1400	0.01707	NLO	100000
ZToMuMu_NNPDF31_13TeV-powheg_M_1400_2300	0.001366	NLO	100000
ZToMuMu_NNPDF31_13TeV-powheg_M_2300_3500	0.00008178	NLO	100000
ZToMuMu_NNPDF31_13TeV-powheg_M_3500_4500	0.000003191	NLO	100000
ZToMuMu_NNPDF31_13TeV-powheg_M_4500_6500	0.000002787	NLO	100000
ZToMuMu_NNPDF31_13TeV-powheg_M_6000_Inf	0.00000009569	NLO	100000
DYJetsToLL_M-50_TuneCP5_13TeV-amcatnloFXFX-pythia8	5765.4	NNLO	29082237
DYJetsToLL_M-50_TuneCP5_13TeV-madgraphMLM-pythia8	5765.4	NNLO	49748967
TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8	87.31	NNLO	79140880
TTToLL_MLL_500To800_NNPDF31_13TeV-powheg-pythia8 (to be done	0.326	NLO	200000
TTToLL_MLL_800To1200_NNPDF31_13TeV-powheg-pythia8 (to be done	e) 3.26E-2	NLO	199800
TTToLL_MLL_1200To1800_NNPDF31_13TeV-powheg-pythia8	3.05E-3	NLO	20617
TTToLL_MLL_1800ToInf_NNPDF31_13TeV-powheg-pythia8	1.74E-4	NLO	1157
ST_tW_top_5f_inclusiveDecays_TuneCP5_13TeV-powheg-pythia8	35.6	NNLO	6952830
ST_tW_antitop_5f_inclusiveDecays_TuneCP5_13TeV-powheg-pythia8	35.6	NNLO	6933094
WW_TuneCP5_13TeV-pythia8	12.178	NNLO	1999000
WWTo2L2Nu_Mll_200To600_13TeV-powheg (to be done)	1.386	NNLO	200000
WWTo2L2Nu_Mll_600To1200_13TeV-powheg (to be done)	5.6665E-2	NNLO	200000
WWTo2L2Nu_Mll_1200To2500_13TeV-powheg (to be done)	> 3.557E-3	NNLO	200000
WWTo2L2Nu_Mll_2500ToInf_13TeV-powheg (to be done)	5.395E-5	NNLO	38969
WZ_TuneCP5_13TeV-pythia8	47.13	NLO	1000000
ZZ_TuneCP5_13TeV-pythia8	16.523	NLO	990064
ZprimeToMuMu_M-5000_TuneCP5_13TeV-madgraphMLM-pythia8	6.76E-5	NLO	100000
RSGravToEEMuMu_kMpl-001_M-250_TuneCP5_13TeV-pythia8 (to be dor	ne)		50000
RSGravToEEMuMu_kMpl-001_M-750_TuneCP5_13TeV-pythia8 (to be dor	ne)		50000
RSGravToEEMuMu_kMpl-001_M-1000_TuneCP5_13TeV-pythia8 (to be do	ne)		50000
RSGravToEEMuMu_kMpl-001_M-1500_TuneCP5_13TeV-pythia8 (to be do	ne)		50000
RSGravToEEMuMu_kMpl-001_M-2000_TuneCP5_13TeV-pythia8 (to be do	ne)		50000
RSGravToEEMuMu_kMpl-001_M-2500_TuneCP5_13TeV-pythia8 (to be do	ne)		50000
RSGravToEEMuMu_kMpl-001_M-3000_TuneCP5_13TeV-pythia8 (to be do	ne)		49657
RSGravToEEMuMu_kMpl-001_M-3500_TuneCP5_13TeV-pythia8 (to be do	ne)		50000
RSGravToEEMuMu_kMpl-001_M-4000_TuneCP5_13TeV-pythia8 (to be do	ne)		50000

Back up,	muon	analysis
----------	------	----------

Process	σ (pb)	Order	Events
ZToMuMu_NNPDF31_13TeV-powheg_M_50_120	2112.904	NLO	2982000
ZToMuMu_NNPDF31_13TeV-powheg_M_120_200	20.553	NLO	100000
ZToMuMu_NNPDF31_13TeV-powheg_M_200_400	2.886	NLO	100000
ZToMuMu_NNPDF31_13TeV-powheg_M_400_800	0.2517	NLO	100000
ZToMuMu_NNPDF31_13TeV-powheg_M_800_1400	0.01707	NLO	100000
ZToMuMu_NNPDF31_13TeV-powheg_M_1400_2300	0.001366	NLO	104000
ZToMuMu_NNPDF31_13TeV-powheg_M_2300_3500	0.00008178	NLO	100000
ZToMuMu_NNPDF31_13TeV-powheg_M_3500_4500	0.000003191	NLO	100000
ZToMuMu_NNPDF31_13TeV-powheg_M_4500_6500	0.000002787	NLO	100000
ZToMuMu_NNPDF31_13TeV-powheg_M_6000_Inf	0.00000009569	NLO	100000
DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8	5765.4	NNLO	997561
DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8	5765.4	NNLO	100194597
TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8	87.31	NNLO	64330000
TTToLL_MLL_500To800_TuneCUETP8M1_13TeV-powheg-pythia8 (to be done)	0.326	NLO	200000
TTToLL_MLL_800To1200_TuneCUETP8M1_13TeV-powheg-pythia8 (to be done)) 3.26E-2	NLO	199800
TTToLL_MLL_1200To1800_TuneCUETP8M1_13TeV-powheg-pythia8 (to be done	e) 3.05E-3	NLO	200000
TTToLL_MLL_1800ToInf_TuneCUETP8M1_13TeV-powheg-pythia8 (to be done)	1.74E-4	NLO	40829
ST_tW_top_5f_inclusiveDecays_TuneCP5_13TeV-powheg-pythia8	35.6	NNLO	9640000
ST_tW_antitop_5f_inclusiveDecays_TuneCP5_13TeV-powheg-pythia8	35.6	NNLO	7695000
WW_TuneCP5_13TeV-pythia8	118.7	NNLO	7920000
WWTo2L2Nu_Mll_200To600_13TeV-powheg (to be done)	1.386	NNLO	200000
WWTo2L2Nu_Mll_600To1200_13TeV-powheg (to be done)	5.6665E-2	NNLO	200000
WWTo2L2Nu_Mll_1200To2500_13TeV-powheg (to be done)	3.557E-3	NNLO	200000
WWTo2L2Nu_Mll_2500ToInf_13TeV-powheg/ (to be done)	5.395E-5	NNLO	38969
WZ_TuneCP5_13TeV-pythia8	47.13	NLO	1979000
ZZ_TuneCUETP8M1_13TeV-pythia8	16.523	NLO	990064
ZprimeToMuMu_M-5000_TuneCP5_13TeV-pythia8	6.76E-5	NLO	100000
RSGravToEEMuMu_kMpl-001_M-250_TuneCP5_13TeV-pythia8 (to be done)			50000
RSGravToEEMuMu_kMpl-001_M-750_TuneCP5_13TeV-pythia8 (to be done)			50000
RSGravToEEMuMu_kMpl-001_M-1000_TuneCP5_13TeV-pythia8 (to be done)			50000
RSGravToEEMuMu_kMpl-001_M-1500_TuneCP5_13TeV-pythia8 (to be done)			50000
RSGravToEEMuMu_kMpl-001_M-2000_TuneCP5_13TeV-pythia8 (to be done)			50000
RSGravToEEMuMu_kMpl-001_M-2500_TuneCP5_13TeV-pythia8 (to be done)			50000
RSGravToEEMuMu_kMpl-001_M-3000_TuneCP5_13TeV-pythia8 (to be done)			50000
RSGravToEEMuMu_kMpl-001_M-3500_TuneCP5_13TeV-pythia8 (to be done)			50000
RSGravToEEMuMu_kMpl-001_M-4000_TuneCP5_13TeV-pythia8 (to be done)			50000

Table 2: Summary of simulated background process samples for 2017 samples.

Table 3: Summary of simulated background process samples for 2018 samples.

Figure 66: Total decay widths, as well as decay widths into the different final states, for the V2 and A2 Dark Matter models as a function of the mediator mass for a DM mass of 500 GeV.