$\Lambda(1520), \Sigma(1385)^{\pm} \text{ and } K^*(892)^{\pm} \text{ resonance}$ production in BiBi@9.2 GeV

Mikhail Malaev

Analysis Details: $\Lambda(1520) \rightarrow p + K$

- ✤ Data: Request 25, <u>BiBi@9.2</u> GeV, UrQMD+Geant4
- ✤ Analysis train: Request 6 with resonance wagons
 - Event and track selection:

Event selection:

mZvtxCut 130 // cut on vertex z coordinate

event.getCentrTPC() // Centrality determination

PID cuts:

mPIDsigTPC 2 // dEdx PID parameters

mPIDsigTOF 2 // dEdx PID parameters

mNofHitsCut 10 // minimal number of hits for a track

mEtaCut 1.0 // maximal pseudorapidity for a track

mPtminCut 0.1 // minimal pt for a track

mDCACut 2.0* σ // maximum DCA for a track ($\sigma = \sigma(p_T, \text{ centrality})$)

Pair cuts:

mYCut 0.5 // pair rapidity cut

Analysis Details: $K^*(892)^{\pm} \rightarrow \pi^{\pm} + K_s$

Event selection:

mZvtxCut 130 // cut on vertex z coordinate

PID cuts:

mPIDsigTPC 2 // dEdx PID parameters

mPIDsigTOF 2 // dEdx PID parameters

mNofHitsCut 10 // minimal number of hits for a track

mEtaCut 1.0 // maximal pseudorapidity for a track

mPtminCut 0.1 // minimal pt for a track

mDCACut 2.0* σ // maximum DCA for a track ($\sigma = \sigma(p_T, \text{ centrality})$)

Pair cuts:

mYCut 0.5 // pair rapidity cut

Ks cuts:

mChi2PionKs 7.0 // minimum Chi2-to-PV for pion from Ks

mKsEtaCut 1.2 // maximum pseudorapidity for Ks

mChi2Ks 3.0 // maximum Chi2 for Ks secondary vertex

mPAKs 0.1 // maximum pointing angle for Ks

mDecayKs 0.5 // minimum decay distance for Ks

mDistKs 1.0 // maximum distance between pi-pi in the secondary vertex from Ks

mNSigmaKs 2.0 // n-sigma selection for Ks candidates

mWidthKs 5e-3 // width of Ks peak

Analysis Details: $\Sigma(1385)^{\pm} \rightarrow \pi^{\pm} + \Lambda$

Event selection:

mZvtxCut 130 // cut on vertex z coordinate

PID cuts:

mPIDsigTPC 2 // dEdx PID parameters

mPIDsigTOF 2 // dEdx PID parameters

mNofHitsCut 10 // minimal number of hits for a track

mEtaCut 1.0 // maximal pseudorapidity for a track

mPtminCut 0.1 // minimal pt for a track

mDCACut 2.0* σ // maximum DCA for a track ($\sigma = \sigma(p_T, \text{ centrality})$)

Pair cuts:

mYCut 0.5 // pair rapidity cut

Lambda cuts:

mChi2PionLam 7.0 // minimum Chi2-to-PV for pion from Lambda

mChi2ProtLam 3.0 // minimum Chi2-to-PV for proton from Lambda

mLamEtaCut 1.2 // maximum pseudorapidity for Lambda

mChi2Lam 3.0 // maximum Chi2 for Lambda secondary vertex

mPALam 0.1 // maximum pointing angle for Lambda

mDecayLam 0.5 // minimum decay distance for Lambda

mDistLam 1.0 // maximum distance between p-pi in the secondary vertex from Lambda

mNSigmaLam 2.0 // n-sigma selection for Lambda candidates

mWidthLam 2e-3 // width of Lambda peak Cross-PWG meeting: 02.04.2024

Mass Resolution for resonances

 $\Lambda(1520)$, reconstructed peaks

Full chain simulation and reconstruction, $p_T = 0.6-0.8 \text{ GeV/c}$, $\Lambda(1520) \rightarrow p + K^-$, |y| < 0.5*

- Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- Distributions are fit to Voigtian function + polynomial (mass resolution fixed to estimated value, Γ -** free parameter)
- Signal can be reconstructed at $p_T > 0.4$ GeV/c in central and semi-central collisions, high- p_T reach is ** limited by available statistics

 $K^*(892)^{\pm}$, reconstructed peaks

Full chain simulation and reconstruction, $p_T = 0.2-0.4 \text{ GeV/c}$, $K^*(892)^{\pm} \rightarrow K_s + \pi^-, (K_s \rightarrow \pi^- + \pi^+) |y| < 0.5$ *

- Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- Distributions are fit to Voigtian function + polynomial (mass resolution fixed to estimated value, Γ free parameter)
- Signal can be reconstructed at $p_T > 0$, high- p_T reach is limited by available statistics
- S/B ratios deteriorates with increasing centrality Cross-PWG meeting: 02.04.2024

 $\Sigma^*(1385)^{\pm}$, reconstructed peaks

♦ Full chain simulation and reconstruction, $p_T = 0.6-0.8 \text{ GeV/c}$, $\Sigma(1385)^{\pm} \rightarrow \Lambda + \pi^{\pm}$, ($\Lambda \rightarrow p + \pi$) |y| < 0.5

- Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- Distributions are fit to Voigtian function + polynomial (mass resolution fixed to estimated value, Γ free parameter)
- ★ Signal can be reconstructed at $p_T > 0.2$ GeV/c in semi-central and at $p_T > 0.4$ GeV/c in central and peripheral collisions, high- p_T reach is limited by available statistics

Reconstruction efficiencies

Σ(1385)[±]

Λ(1520)

K*(892)[±]

- ♦ Reasonable efficiencies in the wide p_T range, |y| < 0.5
- Alpha Measurements are possible from 0 momentum for K*(892)[±] and from 0.2-0.4 GeV/c for $\Lambda(1520)$ and $\Sigma(1385)^{\pm}$
- ✤ Modest centrality dependence

MC closure tests

• Full chain simulation and reconstruction, p_T ranges are limited by the possibility to extract signals, |y| < 0.5

Σ(1385)[±]

Λ(1520)

K*(892)[±]

- Reconstructed spectra match the generated ones within uncertainties
- ✤ First measurements for resonances in centrality dependent analysis will be possible with accumulation of ~ 10^8 A+A events
- ✤ Measurements are possible starting from ~ zero momentum → sample most of the yield, sensitive to possible modifications

Summary

- ✤ Measurement of resonances contribute to the MPD physical program
 - ✓ hadronic phase properties, strangeness production, hadronization mechanisms and collectivity, hadrochemistry, spin alignment etc ...
- First measurements for resonances in centrality dependent analysis will be possible with accumulation of ~ 10⁸ A+A events
- ✓ Measurements are possible starting from very low momenta with decent mass resolution → high sensitivity to different physics phenomena most prominent at low p_T

Backup slides

Feasibility studies, framework

- Simulated minbias AuAu@11 collisions using UrQMD 3.4 with default settings
- Tracked simulated particles through the MPD Phase-I detector using *mpdroot*
- Analysis cuts were optimized for higher signal significance (no p_T variation)
 - Event selection:
 - ✓ $|Z_{vrtx}| < 50$ cm, realistic distribution
 - Basic track selections:
 - ✓ number of TPC hits > 24
 - $\checkmark \quad |\eta| < 1.0$
 - ✓ $p_T > 50 \text{ MeV/c}$
 - ✓ TPC-TOF combined PID, probability > 0.5
 - ✓ TPC-refit for kaons and protons based on track PID hypothesis
 - Primary tracks:
 - ✓ $|\text{DCA}(x,y,z)| < 2\sigma$
 - V0 & cascades:
 - ✓ topology cuts for weakly decaying secondary particles ($K_s \rightarrow \pi \pi$)
 - Combinatorial background:
 - event mixing ($|\Delta_{\text{Zvrtx}}| < 2 \text{ cm}, |\Delta_{\text{Mult}}| < 20, N_{\text{ev}} = 10$)

Resonances

Particle	Mass (MeV/ c^2)	Width (MeV/ c^2)	Decay	BR (%)
ρ0	770	150	π*π	100
$K^{\star \pm}$	892	50.3	π±K₅	33.3
K*0	896	47.3	πK^{+}	66.7
ф	1019	4.27	K+K-	48.9
Σ^{\star_+}	1383	36	$\pi^+\Lambda$	87
Σ*-	1387	39.4	$\pi \Lambda$	87
Λ(1520)	1520	15.7	K⁻p	22.5
Ξ*0	1532	9.1	π ⁺ Ξ ⁻	66.7