# Nonseparable Schrödinger equation in Discrete Variable Representation 

Sara Shadmehri<br>JINR, Dubna

April 23, 2024

## Overview

(1) Discrete Variable Representation Method

- hydrogen atom in crossed static electric and magnetic fields
- hydrogen atom in elliptically polarized strong laser field
- Laser-atom interaction beyond dipole approximation


## Discrete Variable Representation Method

The solution of the Schrödinger equation associated with a particle of mass $m$ under the interaction $V(\mathbf{r}, t)$

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r}, t)\right] \Psi(\mathbf{r}, t) \tag{1}
\end{equation*}
$$

is expressed as

$$
\begin{equation*}
\psi(r, \Omega, t)=\frac{1}{r} \sum_{j=1}^{N_{\Omega}} f_{j}(\Omega) u_{j}(r, t) \tag{2}
\end{equation*}
$$

$f_{j}(\Omega)$ : basis defined on the 2D angular grid $\Omega_{j}=\left(\theta_{j}, \phi_{j}\right)$
Orthogonality Condition

$$
\int Y_{\nu}{ }^{*}(\Omega) Y_{\nu^{\prime}}(\Omega) \approx \sum_{j} w_{j} Y_{\nu}{ }^{*}\left(\Omega_{j}\right) Y_{\nu^{\prime}}\left(\Omega_{j}\right)=\delta_{\nu \nu^{\prime}} \quad, \quad \nu=(I, m)
$$

## Quadratures on Unit Sphere

$$
\int_{\mathbb{S}^{2}} f(\theta, \phi) d \Omega \approx \sum_{j=1}^{N_{\Omega}} w_{j} f\left(\theta_{j}, \phi_{j}\right) \equiv Q(f)
$$

- By solving a simultaneous set of nonlinear equations, the nodes $\left(\theta_{j}, \phi_{j}\right)$ and weights $w_{j}$ of a quadrature rule $Q(f)$ is determined.
- Lebedev (and Popov) quadratures invariant under specific rotation groups [Sobolev,1962]
- Accuracy order of $Q(f): p$-maximum degree of the polynomial $f$ which can be integrated exactly
- Quadrature efficiency: $\frac{(p+1)^{2}}{3 N_{\Omega}}$

|  | 1D $\times$ 1D Gaussian | 2D Popov or Lebedev |
| :---: | :---: | :---: |
| $Q(f)$ | $\sum_{i=1}^{N_{\theta}} w_{i} \sum_{i^{\prime}=1}^{N_{\phi}} w_{i^{\prime}} f\left(\theta_{i}, \phi_{i^{\prime}}\right)$ | $\sum_{j=1}^{N_{\Omega}} w_{j} f\left(\theta_{j}, \phi_{j}\right)$ |
| $N_{\Omega}$ | $=N_{\theta} \times N_{\phi}$ | $=N_{\theta}=N_{\phi}$ |
| efficiency | $2 / 3$ | $\simeq 1$ |

## Quadratures on Unit Sphere


(A) Gaussian Product grid with $N_{\Omega}=800$
(B) Lebedev grid with $N_{\Omega}=266$

## Constructing DVR basis function

$$
\psi(r, \Omega, t)=\frac{1}{r} \sum_{j=1}^{N_{\Omega}} f_{j}(\Omega) u_{j}(r, t)
$$

| Gaussian | Lebedev or Popov |
| :---: | :---: |
| $f_{j}(\Omega)=\sum_{\nu=1}^{N_{\Omega}} \bar{Y}_{\nu}(\Omega)\left[Y^{-1}\right]_{\nu j}$ | $f_{j}(\Omega)=\sum_{\nu=1}^{N_{\Omega}} \sqrt{4 \pi w_{j}} \Phi_{\nu}(\Omega) \Phi_{\nu}^{*}\left(\Omega_{j}\right)$ |
| $Y_{j \nu}=\sqrt{w_{j}} \bar{Y}_{\nu}\left(\Omega_{j}\right)$ |  |
| $\bar{Y}_{\nu}(\Omega)=\bar{Y}_{l m}(\Omega)=e^{i m \phi} \sum_{l^{\prime}} c_{l}^{\prime^{\prime}} P_{l^{\prime}}^{m}(\theta)$ | $\Phi_{\nu}(\Omega)=\sum_{\mu} S_{\nu \mu} Y_{\mu}(\Omega)$ |

Gaus $\bar{Y}_{\nu}$ coinsides with the spherical harmonics except the largest incorporated / values which are orthonalized by the the Gram-Schmidt method
Leb $\hat{S}$ : a matrix which makes a set of $N_{\Omega}$ basis functions $\Phi_{\nu}$ orthonormal over the Lebedev (or Popov) grid points $\Omega_{j}$.
国 S. Shadmehri, S. Saeidian and V. S. Melezhik J. Phys. B: At. Mol. Opt. Phys. 53, 085001 (2020)

## Applying DVR to the main Hamiltonian

The problem is reduced to a system of Schrödinger-type equations which should be solved for the unknown $N_{\Omega}$-dimensional vector

$$
\mathbf{u}(r, t)=\left\{\sqrt{w_{j}} u_{j}(r, t)\right\}_{1}^{N_{\Omega}}=\left\{\sqrt{w_{j}} r \psi\left(r, \Omega_{j}, t\right)\right\}_{1}^{N_{\Omega}},
$$

$$
\begin{equation*}
i \frac{\partial}{\partial t} \mathbf{u}(r, t)=\left[\hat{H}_{0}(r)+\hat{V}(r, t)\right] \mathbf{u}(r, t) \tag{3}
\end{equation*}
$$

where the elements of the $N_{\Omega} \times N_{\Omega}$ matrices $\hat{H}^{(0)}(r)$ and $\hat{V}(r, t)$ are represented as

$$
\begin{align*}
H_{j j^{\prime}}^{(0)}(r) & =-\frac{1}{2}\left(\delta_{j j^{\prime}} \frac{d^{2}}{d r^{2}}-\frac{L_{j j^{\prime}}^{2}}{r^{2}}\right)-\frac{1}{r} \delta_{j j^{\prime}},  \tag{4}\\
V_{j j^{\prime}}(r, t) & =V\left(r, \Omega_{j}, t\right) \delta_{j j^{\prime}} . \tag{5}
\end{align*}
$$

Gaus $L_{j j^{\prime}}^{2}=\sum_{\nu=1}^{N_{\Omega}} \sqrt{w_{j} w_{j^{\prime}}} \bar{Y}_{\nu}\left(\Omega_{j}\right)\left((I+1) \bar{Y}_{\nu}^{*}\left(\Omega_{j^{\prime}}\right)\right.$
Leb $L_{j j^{\prime}}^{2}=4 \pi \sum_{\nu=1}^{N_{\Omega}} \sqrt{W_{j} w_{j^{\prime}}} \sum_{\mu=1}^{\bar{N}_{\Omega}} S_{\nu \mu} I_{\mu}\left(I_{\mu}+1\right) Y_{\mu}\left(\Omega_{j}\right) \Phi_{\nu}^{*}\left(\Omega_{j^{\prime}}\right)$

## Propagating the wavefunction in time $t_{n} \rightarrow t_{n+1}=t_{n}+\Delta t$

The component-by-component split-operator method is applied as

$$
\begin{equation*}
\mathbf{u}\left(r, t_{n}+\Delta t\right)=\exp \left[-\frac{i}{2} \Delta t \hat{V}\left(r, t_{n}\right)\right] \exp \left[-i \Delta t \hat{H}_{0}(r)\right] \exp \left[-\frac{i}{2} \Delta t \hat{V}\left(r, t_{n}\right)\right] \mathbf{u}\left(r, t_{n}\right) \tag{6}
\end{equation*}
$$

Operators $\hat{M}$ and $\hat{W}$ diagonalizing $\hat{L}^{2}$ in $\hat{H}_{0}$
Gaus $M_{j \nu}=\sqrt{w_{j}} \bar{Y}_{\nu}\left(\Omega_{j}\right), \overline{\mathbf{u}}=\hat{M} \mathbf{u}$

$$
\hat{A}_{\nu \nu^{\prime}}=\left(\hat{M} \hat{H}_{0} \hat{M}^{\dagger}\right)_{\nu \nu^{\prime}}=\left[-\frac{1}{2} \frac{d^{2}}{d r^{2}}+\frac{I(I+1)}{2 r^{2}}-\frac{1}{r}\right] \delta_{\nu \nu^{\prime}}
$$

Leb $\hat{W}^{-1} \hat{L}^{2} \hat{W}=\hat{\jmath}, \overline{\mathbf{u}}=\hat{W}^{-1} \mathbf{u}, \hat{W}$ : numerically

$$
\hat{A}_{\nu \nu^{\prime}}=\left(\hat{W}^{-1} \hat{H}_{0} \hat{W}\right)_{\nu \nu^{\prime}}=\left[-\frac{1}{2} \frac{d^{2}}{d r^{2}}+\frac{J_{\nu}}{2 r^{2}}-\frac{1}{r}\right] \delta_{\nu \nu^{\prime}}
$$

The total number of operations at each time step (6) in our algorithm: $N_{r}\left(2 N_{\Omega}^{2}+\alpha N_{\Omega}\right)$ $\alpha=(2 \times 7)^{2} \simeq 200$

## Hydrogen atom in crossed static electric $\mathbf{F}$ and magnetic B fields

The interaction potential is expressed as

$$
\begin{equation*}
\hat{V}(\mathbf{r})=-\frac{1}{r}+(\mathbf{F} \cdot \mathbf{r})+\frac{1}{2}(\mathbf{B} \cdot \mathbf{L})+\frac{1}{8}[\mathbf{B} \times \mathbf{r}]^{2} \tag{7}
\end{equation*}
$$

The vectors $\mathbf{B}$ and $\mathbf{F}$, which form an arbitrary angle $\alpha$, are placed in the $x z$-plane,

$$
\begin{equation*}
\mathbf{B}=\beta \mathbf{n}_{z} \quad, \quad \mathbf{F}=\gamma\left(\sin \alpha \mathbf{n}_{x}+\cos \alpha \mathbf{n}_{z}\right) . \tag{8}
\end{equation*}
$$

The strengths $\gamma$ and $\beta$ of the electric and magnetic field are expressed in atomic units $F_{0}=e^{5} m_{e}^{2} / \hbar^{4} \approx 5.14 \times 10^{9} \mathrm{~V} / \mathrm{cm}$ and $B_{0}=(e / \hbar)^{3} m_{e}^{2} c \approx 2.35 \times 10^{9} \mathrm{G}\left(\hbar=e=m_{e}=1\right)$.


Figure: The ground-state energies of a hydrogen atom in the external magnetic $\beta=2.0$ and electric $\gamma=0.5,1.0,1.5,2.0$ fields perpendicular to one another ( $\alpha=\pi / 2$ ). The thin horizontal black lines show the most accurate value obtained for each case.

## Hydrogen atom in elliptically polarized strong laser field

- interaction potential: length gauge, dipole approximation,

$$
V(\mathbf{r}, t)=-\mathbf{r} \cdot \mathbf{E}(t)
$$

- $\mathbf{E}(t)=\frac{f(t)}{\sqrt{1+\varepsilon^{2}}} E_{0}(\hat{\mathbf{x}} \cos \omega t+\hat{\mathbf{y}} \varepsilon \sin \omega t)$
- Laser Parameters :
$\lambda=800 \mathrm{~nm}, I=10^{14} \mathrm{~W} / \mathrm{cm}^{2}, N=7.5$ optical cycles of period $T=2 \pi / \omega$ with pulse envelope function,

$$
f(t)=\cos ^{2}\left(\frac{\pi t}{N T}\right) \quad, \quad-N T / 2<t<N T / 2
$$

- initial state of the system: ground state of the hydrogen atom

$$
P_{g}=\left|\left\langle\psi \mid \phi_{100}\right\rangle\right|^{2}=\left|\int \psi\left(\mathbf{r}, t=t_{\text {out }}\right) \phi_{100}(\mathbf{r}) d \mathbf{r}\right|^{2}
$$



固
X. Gao and X -M Tong, PRA 100, 063424 (2019)

$$
P_{n / m}=\left|\left\langle\psi \mid \phi_{n l m}\right\rangle\right|^{2}=\left|\int \psi\left(\mathbf{r}, t=t_{\text {out }}\right) \phi_{n l m}(\mathbf{r}) d \mathbf{r}\right|^{2}
$$



Laser-atom interaction beyond dipole approximation

## Laser-atom interaction beyond dipole approximation

Assume a strong laser field linearly polarized along the $z$-axis and propagating along the $y$-axis,

$$
\mathbf{A}(\mathbf{r}, t)=\hat{\mathbf{z}} \frac{E_{0}}{\omega} \sin ^{2}\left(\frac{\pi t}{N T}\right) \sin (\omega t-\mathbf{k} \cdot \mathbf{r})
$$



Dipole Approximation: $\mathbf{A}(\mathbf{r}, t) \approx \mathbf{A}(t) \rightarrow \mathbf{V}(\mathbf{r}, t)=\mathbf{r} \cdot \mathbf{E}(t)$

## Beyond dipole approximation

expanding $\mathbf{A}(\mathbf{r}, t)$ to the first order of $\mathbf{k} \cdot \mathbf{r}$,

$$
\begin{align*}
& \sin (\mathbf{k} \cdot \mathbf{r}) \approx \mathbf{k} \cdot \mathbf{r} \quad, \quad \cos (\mathbf{k} \cdot \mathbf{r}) \approx 1.0 \\
& \mathbf{A}(\mathbf{r}, t)=\hat{\mathbf{z}} \frac{E_{0}}{\omega} \sin ^{2}\left(\frac{\pi t}{N T}\right)\left[\sin (\omega t)-\frac{\omega}{c} y \cos (\omega t)\right] \tag{10}
\end{align*}
$$

The electric $\mathbf{E}=-\frac{d \mathbf{A}}{d t}$ and magnetic $\mathbf{B}=\nabla \times \mathbf{A}$ fields can be calculated accordingly.

The Lorentz force acting on each constituent particle of the hydrogen atom (with charge $q_{i}= \pm e$, mass $m_{i}$ and momentum $\mathbf{p}_{i}$ ) is of the form $\mathbf{F}_{i}=q_{i} \mathbf{E}+\frac{q_{i}}{m_{i}}\left(\mathbf{p}_{i} \times \mathbf{B}\right)$
Passing to the coordinates of $C M$, the interaction potential $U$ between the atom and the electromagnetic field follows

$$
\begin{align*}
U & =-E_{0}\left[\sin ^{2}\left(\frac{\pi t}{N T}\right) \cos (\omega t)+\frac{1}{2 N} \sin \left(\frac{2 \pi t}{N T}\right) \sin (\omega t)\right] z \\
& -E_{0} \frac{\omega}{c}\left[\sin ^{2}\left(\frac{\pi t}{N T}\right) \sin (\omega t)-\frac{1}{2 N} \sin \left(\frac{2 \pi t}{N T}\right) \cos (\omega t)\right](y z+y Z+Y z) \\
& -\frac{E_{0}}{c} \sin ^{2}\left(\frac{\pi t}{N T}\right) \cos (\omega t)\left(\frac{y p_{z}-z p_{y}}{\tilde{\mu}}+\frac{Y p_{z}-Z p_{y}}{\mu}+\frac{y P_{z}-z P_{y}}{M}\right) \tag{11}
\end{align*}
$$

$M=m_{1}+m_{2}, \mu=\frac{m_{1} m_{2}}{M}, \tilde{\mu}=\frac{m_{1} m_{2}}{m_{2}-m_{1}}$

The total Hamiltonian of the system turns into

$$
\begin{equation*}
H(\mathbf{r}, \mathbf{R}, t)=\frac{\mathbf{P}^{2}}{2 M}+h_{0}(\mathbf{r})+U_{1}(\mathbf{r}, t)+U_{2}(\mathbf{r}, \mathbf{R}, t) \tag{12}
\end{equation*}
$$

$c=137$ a. .
$\omega=0.2, \ldots, 1.0$ a.u.

$$
\begin{align*}
h_{0}(\mathbf{r}) & =\frac{\mathbf{p}^{2}}{2 \mu}-\frac{1}{r}  \tag{13}\\
U_{1}(\mathbf{r}, t) & =-E_{0}\left[\sin ^{2}\left(\frac{\pi t}{N T}\right) \cos (\omega t)+\frac{1}{2 N} \sin \left(\frac{2 \pi t}{N T}\right) \sin (\omega t)\right] z \\
& -E_{0} \frac{\omega}{c}\left[\sin ^{2}\left(\frac{\pi t}{N T}\right) \sin (\omega t)-\frac{1}{2 N} \sin \left(\frac{2 \pi t}{N T}\right) \cos (\omega t)\right] y z \\
& -\frac{E_{0}}{c} \sin ^{2}\left(\frac{\pi t}{N T}\right) \cos (\omega t) \hat{L}_{x}  \tag{14}\\
U_{2}(\mathbf{r}, \mathbf{R}, t) & =-E_{0} \frac{\omega}{c}\left[\sin ^{2}\left(\frac{\pi t}{N T}\right) \sin (\omega t)-\frac{1}{2 N} \sin \left(\frac{2 \pi t}{N T}\right) \cos (\omega t)\right] \\
& \times(y Z+z Y) \\
& -\frac{E_{0}}{c} \sin ^{2}\left(\frac{\pi t}{N T}\right) \cos (\omega t)\left(Y p_{z}-Z p_{y}\right) \tag{15}
\end{align*}
$$

The problem is reduced to the simultaneous integration of a system of coupled equations:

$$
\begin{aligned}
i \frac{\partial}{\partial t} \psi(\mathbf{r}, t) & =\left[h_{0}(\mathbf{r})+U_{1}(\mathbf{r}, t)+U_{2}(\mathbf{r}, \mathbf{R}, t)\right] \psi(\mathbf{r}, t) \\
\frac{d}{d t} \mathbf{P} & =-\frac{\partial}{\partial \mathbf{R}} H_{e f f}(\mathbf{R}(t), \mathbf{P}(t)) \\
\frac{d}{d t} \mathbf{R} & =+\frac{\partial}{\partial \mathbf{P}} H_{e f f}(\mathbf{R}(t), \mathbf{P}(t)) \\
H_{\text {eff }}(\mathbf{R}, \mathbf{P}) & =\frac{\mathbf{P}^{2}}{2 M}+\langle\psi(\mathbf{r}, t)| U_{2}(\mathbf{r}, \mathbf{R}, t)|\psi(\mathbf{r}, t)\rangle
\end{aligned}
$$

The initial conditions :

$$
\begin{aligned}
& \psi(\mathbf{r}, t=0)=\phi_{100}(\mathbf{r}) \\
& \mathbf{R}(t=0)=0, \quad \mathbf{P}(t=0)=0
\end{aligned}
$$

Applying DVR to the time-dependent 3D Schrödinger equation and
simultaneously integrating the Hamilton equations of motion with the Störmer-Verlet method:

$$
\begin{array}{r}
\mathbf{P}\left(t_{n}+\frac{\Delta t}{2}\right)=\mathbf{P}\left(t_{n}\right)-\frac{\Delta t}{2} \frac{\partial}{\partial \mathbf{R}} H_{e f f}\left(\mathbf{R}\left(t_{n}\right), \mathbf{P}\left(t_{n}+\frac{\Delta t}{2}\right)\right), \\
\mathbf{R}\left(t_{n}+\Delta t\right)=\mathbf{R}\left(t_{n}\right)+\frac{\Delta t}{2}\left\{\frac{\partial}{\partial \mathbf{P}} H_{e f f}\left(\mathbf{R}\left(t_{n}\right), \mathbf{P}\left(t_{n}+\frac{\Delta t}{2}\right)\right)\right. \\
\left.+\frac{\partial}{\partial \mathbf{P}} H_{e f f}\left(\mathbf{R}\left(t_{n}+\Delta t\right), \mathbf{P}\left(t_{n}+\frac{\Delta t}{2}\right)\right)\right\} \\
\mathbf{P}\left(t_{n}+\Delta t\right)=\mathbf{P}\left(t_{n}+\frac{\Delta t}{2}\right)-\frac{\Delta t}{2} \frac{\partial}{\partial \mathbf{R}} H_{e f f}\left(\mathbf{R}\left(t_{n}+\Delta t\right), \mathbf{P}\left(t_{n}+\frac{\Delta t}{2}\right)\right) \tag{19}
\end{array}
$$

Once the wave-packet $\psi(\mathbf{r}, t)$ and $\mathbf{R}(t)$ and $\mathbf{P}(t)$ of the CM are found during the time interval $0 \leq t \leq t_{\text {out }}$ of the laser pulse action, we can calculate the ionization and excitation probabilities, and analyse the acceleration of the atom.

## Convergence Test

$$
\begin{aligned}
& I=10^{14} \mathrm{~W} / \mathrm{cm}^{2}, \quad \tau=N T=7.6 \mathrm{fs} \\
& \omega=0.3 \text { a.u. }(\lambda=152 \mathrm{~nm})
\end{aligned}
$$





Hydrogen atom interacting with a laser pulse intensity of $I=10^{14} \mathrm{~W} / \mathrm{cm}^{2}$ and duration $\tau=N T=7.6 \mathrm{fs}$

$$
\omega=0.8 \text { a.u. }(\lambda=57 \mathrm{~nm})
$$





## Influence of Nondipole Effects

Table: The probabilities of the population of the ground state $P_{g}$ and total excitation $P_{\text {ex }}$ calculated in the dipole and nondipole approaches for a few laser frequencies with intensity $10^{14} \mathrm{~W} / \mathrm{cm}^{2}$ and 7.6 fs pulse duration.

|  |  |  |  | $P_{g}$ |  | $P_{\text {ex }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\omega$ | Dipole | Nondipole | $\|\Delta P\|^{1}$ | Dipole | Nondipole | $\|\Delta P\|^{1}$ |
| 0.30 | 0.896815 | 0.896805 | $1.05 \mathrm{E}-05$ | $6.3410 \mathrm{E}-05$ | $6.3414 \mathrm{E}-05$ | $6.59 \mathrm{E}-05$ |
| 0.40 | 0.987600 | 0.987599 | $1.34 \mathrm{E}-06$ | $2.3058 \mathrm{E}-03$ | $2.3052 \mathrm{E}-03$ | $2.51 \mathrm{E}-04$ |
| 0.48 | 0.382308 | 0.382294 | $3.54 \mathrm{E}-05$ | $5.8582 \mathrm{E}-01$ | $5.8568 \mathrm{E}-01$ | $2.37 \mathrm{E}-04$ |
| 0.52 | 0.488483 | 0.488465 | $3.74 \mathrm{E}-05$ | $1.9974 \mathrm{E}-02$ | $1.9984 \mathrm{E}-02$ | $4.84 \mathrm{E}-04$ |
| 0.80 | 0.867150 | 0.867131 | $2.20 \mathrm{E}-05$ | $4.6748 \mathrm{E}-07$ | $4.6756 \mathrm{E}-07$ | $1.64 \mathrm{E}-04$ |
| 1.00 | 0.941058 | 0.941045 | $1.39 \mathrm{E}-05$ | $4.8210 \mathrm{E}-07$ | $4.8218 \mathrm{E}-07$ | $1.68 \mathrm{E}-04$ |

V. S. Melezhik and S. Shadmehri, Photonics 10, 1290 (2023)

## Conclusion

(1) An efficient computational scheme based on 2D DVR for integration of the Schrödinger equation with nonseparable angular part is developed.
(2) With this approach, we demonstrate computational advantages in description of hydrogen atom in strong crossed electric and magnetic fields and in strong elliptically polarized laser fields.
(3) New opening in analysing the nondipole effects in laser-atom interaction

## Automation the Analysis of Video Data for the "Open Field" Behavioral Test (MLIT)

## BIOHLIT (MLIT and LRB): Behavioral Test System

«Open Field» maze


Objective: Counting the number of specific behaviors of the animal pre and post-radiation


## BIOHLIT: Video Data Analysis

- Video Annotation for Activity Recognition


## Behavioral Indicators

- crossed sectors
- center entries
- hole dipping
- rearing
- grooming
- freezes

- Using Neural Networks and Learning Algorithms for Classification

Video Classification Methods

- Single Frame CNN
- Late Fusion
- Early Fusion
- CNN with LSTM
- Pose Detection and LSTM
- Optical Flow and CNN
- 3D CNN


Thanks for Your Attention

