Hardware & Configuration DB Status report

Current status

- A catalog of hardware components that SPD detector consist of.
- It should contain the information about the detectors and the electronic parts, racks, and crates, as well as the location history of all items (optionally)
- It include equipment models, provider, parameters and other (semi)permanent characteristics
- This should help in maintenance of the detector systems and especially helpful in knowledge transfer between team members.

- A prototype system is being developed, including PostgreSQL as a back-end, accessed through the REST API from the web interface
- For each type of device, a set of parameters are defined that are common to all devices of this type,
 - Each parameter has type as well as optional ranges of allowed values
- There can be common values for all devices of the same type
- Each device has unique ID assigned to it, and specific values of the parameters can be specified for it, based on its type.
- The set of parameters is now being specified as JSON
- Alternative solution with sets of dynamically generated tables is being developed

Types table

- id unique type ID
- name type name
- properties name and type of the parameters
- properties_fiels min, max and default values

Devices table

- hardware_id unique device ID
- type_id ID of the type of the device
- name device name
- properties name and value of the parameters

Types Endpoints

Туре		^
POST	/type/create Create New Type	\sim
GET	/type/type-by-filter Get Type By Filter	\sim
GET	/type/all-types Get All Types	\sim
POST	/type/add_file Add File	\sim
РАТСН	/type/update Update	\sim
DELETE	/type/delete Delete	\sim

- /create creating a type
- /type-by-filter getting a type by name or id
- /all-types getting all types
- /add_file creating multiple types
- /update updating a type
- /delete deleting a type

Devices Endpoints

Device \wedge /device/create Create Device \sim POST /device/get-by-datetime Get Devices By Datetime \sim /device/get-by-type Get Devices By Type \sim /device/get-by-hardwareId Get Device By Hardware Id \sim \sim /device/all-devices Get All Devices /device/add file Add File POST \sim /device/update Update \sim /device/delete Delete DELETE \sim

- /create creating a device
- /get-by-datetime getting a device by creation time
- /get-by-type getting a device by type
- /get-by-hardwareId getting a device by hardware ID

- /all-devices getting all devices
- /add_file creating multiple devices
- /update updating devices
- /delete deleting devices

DAQ ^{v2.6}			Ŀ	All data Add data	Get data				SERVERDB	10:4
	All types All dev	vices								
	All types									
	Q Search for items							1		
	NAME	PROPERTIES	ID	CREATED_AT	UPDATED_AT					
	DT5215	Properties	4	4/16/2024, 02:01	4/16/2024, 02:01	١	2	创		
	DT5485PB	Properties	3	4/16/2024, 01:49	4/16/2024, 01:49	١	2	⑪		
	A7585D	Properties	2	4/16/2024, 01:19	4/16/2024, 01:19	۱	S	Ŵ		
	DT5202	Properties	1	4/16/2024, 01:00	4/16/2024, 01:00	١	2	Ŵ		

23.04.2024

PROPERTIES	FORMAT	UNITS OF MEASUREMENT	MIN	DEFAULT	MAX
PID	int				
eth	ip				
HV_Imax	decimal	mA		0.09	
HV_Vbias	decimal	V		29.0	
HV_IndivAdj	int		0		255
TempSensType	str			TMP37	
FPGA FW build	int			7703	
uC FW revision	longint			21071501	
HV_Adjust_Range	str			4.5	
FPGA FW revision	decimal			5.0	
TempFeedbackCoeff	int			35	
EnableTempFeedback	bool			false	

PROPERTIES	VALUES	UNITS OF MEASUREMENT
PID	10	
eth	123.43.3.12	
HV_Imax	0.09	mA
HV_Vbias	29.0	V
HV_IndivAdj	233	
TempSensType	TMP37	
FPGA FW build	7703	
uC FW revision	21071501	
HV_Adjust_Range	4.5	
FPGA FW revision	5.0	
TempFeedbackCoeff	35	
EnableTempFeedback	true	

DAQ ^{v2.6}	All data <u>Add data</u> Get data		• SERVER • DB 10:46
Create type Select this section to create a unique type.	Create Type Name:	Last 5 ad ID 4	Ided types: NAME DT5215
Create types from file Select this section to create a unique types from file.	Properties: prop name VUOM min default max + add new	3 2 1	DT5485PB A7585D DT5202
Create devices Select this section to create a unique devices.	Save data		
Create devices from file Select this section to create a unique devices from file.			

DAQ Mapping

- The number of data collection channels of the SPD installation will be several hundred thousand
- The signals from the detector will pass through several communication devices

• It is necessary to have a mapping of the data collection system that establishes the correspondence of the channel addresses at the DAQ outputs with the devices from which this signal came

- Due to the large number of elements in the system, it is almost impossible to build mapping manually
- For the elements involved in the transmission of digital signals, an automatic mapping procedure should be implemented
 - The element must issue a HW ID over the data channel in response to a special signal
- For parts of the system that are not equipped with automatic source ID recognition, an interface must be provided that allows data entry by groups.

Mapping model

Type table: (id) unique type identifier, (name) type name, (children_count) number of child devices, (created_at) type creation time,(update_at) type update time. Port table: (id) unique identifier,(device_id) id of the device to which the port belongs, (name) port name, (child_id) id of the device connected to this port, (crated_at) port creation time, (updated_at) port update time.

Device table: (id) unique identifier,(name) device name, (parent) device parent, (hardware_id) unique device identifier, (created_at) device creation time, (updated_at) device update time,(type) device type

Mapping types Endpoints

Mapping Type		
POST	/mapping-type/create Create New Type	~
GET	/mapping-type/get-type-by-id Get Type By Id	~
POST	/mapping-type/add_file Add File	
PATCH	/mapping-type/update Update	~
DELETE	/mapping-type/delete Delete	~

- /create creating a type
- /get-type-id getting a type by id
- /add_file creating multiple types
- /update updating a type
- /delete deleting a type

Mapping devices Endpoints

Mapping Device	^
POST /mapping-device/create Create New Device	~
GET /mapping-device/get-device-by-id Get Device By Id	~
POST /mapping-device/adding-intermediate-device Adding Intermediate Device	~
POST /mapping-device/add_file Add File	~
PATCH /mapping-device/update Update	~
DELETE /mapping-device/delete Delete	~

- /create creating a device
- /get-device-by-id getting a device by id
- /adding-intermediate-device adding intermediate devices
- /add-file adding multiple devices
- /update updating a device
- /delete deleting a device

- Due to the large number of elements in the system, it is almost impossible to build mapping manually
- For the elements involved in the transmission of digital signals, an automatic mapping procedure should be implemented
 - The element must issue a HW ID over the data channel in response to a special signal
- For parts of the system that are not equipped with automatic source ID recognition, an interface must be provided that allows data entry by groups.

- It is expected that the filling of the hardware database will take place gradually, and updates will be rare
- The construction of the connection diagram and its changes will also be performed rarely (no more than once a week)
- The requirements for the speed of recording information in the database are low
- Mapping information may be required when processing each file. It is possible that tens of thousands of processes will try to simultaneously access the system.
- It is necessary to ensure their processing, avoiding database overload due to too high frequency of requests

- A Input for the further development of the HWDB is required
- Most of the subsystems are in the very early stage of the development
- For some detectors, like Range System, design of the system and components are already defined to some extent
- The development of the HWDB can be based on the input from them