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Objectives

B Ina collider the beam should stay for a long time
= The growth rates for beam emittances and bunch length should be
sufficiently small

In a properly built machine the IBS typically dominates
However, the RF noise, if not properly addressed, may result in

unacceptably large longitudinal emittance growth
¢ Proton bunches are long
e Therefore, both the phase and amplitude noises are important
¢ Additional complication originates from non-linearity of potential well.

It is important for hadron beams which, typically, take large fraction of
RF well.

B Similar to the longitudinal degree of freedom, noise in bending
magnetic field and L dampers leads to transverse emittance growth
¢ Proton colliders have large circumference => small revolution
frequency => more susceptible to noise due to its fast growth
with frequency decrease
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Fourier Transform,
Spectrum, Spectral Density
and Shot Noise
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Correlation Function and Spectral Density

B For a complex function approaching zero at + infinity we have
1

So :EIO f(He™dt < f(t)= IO f.e"dw

B Introduce correlation function K(z)= f(¢)f (t+7) and express it
through Fourier harmonics

f(f)f* (t n T) _ T T fwf;,ei“’te_i”'(t+r)da)da)'

—00 —00

B Since different harmonics in a random process do not correlate and
diverge with integration time, T, we put: f, /., = P(0)d(w— ")

. KO =107 (+0=] |

—00 —00

B Thus, we obtained the Wiener-Khinchin theorem

o0

fwf;‘,eia)te—ia)(ﬁr)da)da)lz J‘ P(a))eia)rda)

K(r)= sz P(w)e”dw, P(w)= i T K(t)e ™ dt
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Another Way to Introduce the Spectral Density

B To prevent a divergence of random function harmonic f.,, we redefine
it in the following way

F, = L sz f(He™dt < f(t)=T j F e“dw

-7/2

¢ F, m’rr'oduced this way stays fml’re with T->0
B For the rms value of the function that yields:

T/2 T/2
@ =5 [ lr@Pa=% [ a7 IF@’”"dwf IF e o
—T/2 —T/2

- ]O FF, dodo j ¢ N'dt =27 j F,F, dodo's(o-o)=2x j F,2|de

= P(w)=2xF,|
where we used that I e'dw=275(1)

¢ To prove we put f(f) o(t) then:

T

5(t) = j (6() e"do <= (501), =—j 5(t)e —w”dt_z— = 5(1)——j ¢ dw
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Relationship between Field Energy and Spectral
Energy

B Relationship between [|/®fdr and [l/,[ de

¢ Fourier transform is applicable if f(r)—==-0
Then we can bind £¢) and 1

[|r@fae= [ a[ [dodars, g, e =2z [|£.f do

—00 —00 —00 —00
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Shot (Schottky) Noise

B We look for a spectral density of sequence of equal pulses which are
located r'andomly in time: U(f)=zu(f—fn)

g o g

—T/2 n,m —T/2
0 0 T/2

ei(w(t—tn)—w’(t—tm)):5nmei(w—a)')(l—t,,) )J‘ J‘u uw da)da) 1 J' dtz (- )(t-t,)

—00 —00 —T/2 n

—00 —00

T/2 j e T 22 15 (-

_ * —i(w-a')t,) (-t S N
= j Iuwuw,da)da)( Ze J I dte >

-T7/2
lzefi(a)fw')tn)_w-l

27{ ]iuwu dwdo' [T Zel‘(”’mja(w—a)’) dir >

n

7 [ uu. dodo' dtei(“’_”‘")’é (w—w")=2rn f u | dew
_ e

—00 —00

=5 | P(@) =27n|u,|

. e’n el
B For electric current u(®)=ed(t) => Fl@)="—=——=>| A" =2elAf
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Longitudinal Emittance
Growth due to RF Noise
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Equations of Longitudinal Motion

B In the absence of perturbations
d’¢ 2 _ eZVing
dt’ Y 2mAmctyB

B Fluctuations of RF phase and amplitude result in

+Q*sinp=0, Q

2
gp +Q7 (1 + 51;0) j sin(@—w(1))=0 ug;‘i;’;‘fgg% > a9 +Q % sing =-Q (sin(p)u(t) + cos(p)y (¢))

dt f dt’

B First, we consider a small amplitude (i.e.) linear motion
and RF phase fluctuations. Then

d’o

dt’

+Q0=-Q y (1)
The solution is well-known

o(t) = —Qsjw(t') sin (Q, (¢ —1")) dt’
The rms particle deviation is

70 =0 [pawn)sin(0, (—1))sin (0, 1 —1,))dds
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Spectral Density and Correlation Function
B Correlation function

K@)=y@)y(t+7r) => K(t,-t,)=w)y(t,)

B Wiener-Khinchin theorem

K(7r)= sz P(w)e”dw, P(w)= i T K(t)e ™ dt

v (L) =Kt —t) = y' =K(0)=[Po)do

B Particle motion under random phase fluctuations

P () = Qszjjw(tl)w(tz) sin (Q, (£ —1,))sin (Q, (1 —1,)) d,dt,

=Q 2ijw(z —t,)sin(Q, (1 —1,))sin(Q, (t —1,)) dtdt,
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Computation of integral pt &

e
' /
T, =t,—t, t=(7,+1,)/2 //(
. . / \)
Make substitution {Tz 1+, {tz ~(£,-7,)/2 y //
L
. . . : /// 4 /./
Corresponding Jacobian is . / | 4
ot,t,) | /2 1/2) 1 p /
\\ e / 1
Then we have —

P’ (t) = QjﬁKV, (1, —1,)sin (Q, (¢ —1,))sin (Q, (¢ —1,) ) dt,dt,

:Qszij (tl_tz){cos(ﬂs(q—tz))+cos(QS(2t—tl—tz))}[%)dtldtz

2
@) 2 © 2t
z i j dTl IKW (Tl ) I:COS (QS Q1 ) +COs (QS (2t -0 )):I dTZ oscillatingtf(:ifr(;lpiflajzt integration >
—0 0
2w
~ st t j K, (7,)cos(Q,7,)dr,

Recollecting connection between the correlation function and the

d S
spectral density we finally obtain: | 5% () =22 F, (Q))

Lectures 7&8, “Emittance Growth due to Noise in RF and Magnets”, V. Lebedev Page | 11



Bunch Lengthening due to Amplitude Noise

B Equation of motion for the small amplitude RF voltage fluctuations:

dZ
y tf +Q 70 =-Q pu(t)

In perturbation theory we replace ¢ in RH side by ¢,sin(Q)

> 0 ()~ Qsz(pozjju(tl)u(tz)sin(Qstl )sin (Q,1, )sin (Q, (¢ —1,))sin (Q, (¢ —1,)) dtdt,
Acting similar to the case of phase noise, accounting that
K, (t—t,)=u(t)u(t,) and dropping fast oscillating terms we obtain

- 2 o0
AOE QTstgooz _[ K, (r)cos(2Q,7)dr

Accounting also #’(0=¢,"/2 we finally obtain

d 2 . 2 2
=7 (1) =72 @~ (H)F,(2€))
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Practical Estimate

B |et's consider Tevatron: ;=Q,/27= 35 Hz, initial bunch length 30 cm

and RF bucket length of 5.65 m (53.1 MHz)
B Require the bunch lengthening 10% after in 10 hours

\/ +T ap +ii
P fin Do dt(” =9 20 dt¢
— _ 2 2
ST L P 2(2 i) ~6.5-107
di o, T 10-3600 565 S

= Corresponding spectral densities
P =43-10"s", P =38-10"s"

= Corresponding rms fluctuations for the white noise in 100 Hz
band

\/? = J4xP,Af =7.3-10"rad , Ji =, [azP, Af =2.2-107rad

Here 4n accounts transition from "physical” to "technical” definition of
the spectral density

B Next, we see how it works in non-linear RF motion
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Action-Phase Variables [ ————

M 2
A2 Single A2 2 F 5k A
H = p_+ U((D) harmonic RF N P + 2QS2 Sinﬂ
2 2 2
1_ —
1 ¢ . dH
I:—C_‘Spdgo, —=w, @=wt
27 dI " 0.5 1 15 )
B For single harmonic RF 02
Pmax 2
I = 2\EQS j \/cosgo—cos o . dp, H= 2Qf(sin%) WD : ' B
0 m
0sF }= =
gomax :
T = i do . w= 2_7[ Sl |
20 % \/COS(p—cos - T | ;
0.4r E o
0.2 '1 '2
140l
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Fokker-Planck Equation

B Introduce the diffusion equation oF DU) ,of
in the following form: o 2@](60(]) 5[]
O Changes in average action/energy
_jlaf ]‘II a[(D(D af} B ID(D ——jf (D([) ;
29 w(l) ol v o(l) ol w(l)
ruou-y 1D, d[DUy) || dH _ dr _1 D)+ ]w(]) D)
2\ (1) "dI\ w(l,) dt dt 2 T\ (1)
dH 1 d—_1,

For linear RF: —-=7P = dtp >

1/2 accounts reduction of momentum growth in linear oscillator
Thus, for linear RF: |P{) = ”Qs3(2QsP¢(Qs)+ Pu(ms)l)

B Widening of the distribution in the action space
iﬁ_i(l_loyzlog(l_[ Y GI[D([) 5f] _ j I-1,) bW, of ,

dt dt 29 w(l) ol a) (1) 8[
1,47\ DD F=50-1) D(I) D(1,)
_gf dl ((1 W k o) o)
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Diffusion in Harmonic RF

B Motion non-linearity couples the diffusion to higher harmonics of
synchrotron frequency [*]

D, ZP na)C (), Cm(]):wf—;‘q‘)dg/ﬁcos¢exp(inwt(¢))2

2
- d
D, =Y P(nw)C,I), C,(I)= ¢ sm¢exp(zna)t(¢))
n=1
D 6 | | D 6 . L -
un pn
4 4
0P 0P "
< 4F N -
Y C -
0 - i — 1 _.._J
0 l .
110, 110,

[*]“Accelerator Physics at the Tevatron Collider”, edited by V. Lebedev and V. Shiltsev, Springer, 2014.
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Final Remarks to the RF noise

B To prevent the longitudinal emittance growth a hadron collider
requires high quality RF, both in the RF phase and the RF amplitude
B Modern high quality RF generators are well within these requirements
for the master oscillator
¢ Microphonics in RF cavities as well as noise in power amplifiers
may excite RF noise to unacceptable level
e To address this problem in the Tevatron Run IT the phase
feedback was used. It stabilized the RF phase relative to the
master (reference) oscillator
¢ As will be seen in the second half of the lecture the longitudinal
damper may be helpful to reduce effect of phase noise
e However, it will require very small noise floor in detecting of
synchrotron motion

B Noise in the bending magnetic field at synchrotron frequency
harmonics works the same way as RF!l!
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Transverse Emittance
Growth due to Noise in
Magnets and its Suppression
by Transverse Damper
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Equations of Motion and their Solution*

B In difference to synchrotron tune the betatron tunes are large (close
or above f5). That completely changes beam response to a perturbation
B First, we consider one point-like dipole perturbation

B To simplify equations, we transit to new (normalized) variables
X 1 dX X dj

d X X
=T —FP o T 32 O+a—
T i s ) e

B TIn new variables a particle posn‘rlon after N furns is:

Xy =x,c08( N +y, )+ ZAp sin (N —n)), Ap, =./j36,

B Further we imply that: 4, =Ap(nT), p(e)p() =K, (t-1,), K,(r) =] P,(@)e”dw
B Then

_ N-1
X' =x,0cos” (LN +yy)+ D Ap,Ap, sin(u(N - n))sin(,u(N —~ m))
n,m=0
N-1
=x, cos’ (uN +w, )+ D K(T(n —m))sin(,u(N—n))sin(,u(N—m))
n,m=0

* V. Lebedev, et.al. “EMITTANCE GROWTH DUE TO NOISE AND ITS SUPPRESSION WITH THE FEEDBACK SYSTEM IN
LARGE HADRON COLLIDERS”, Particle Accelerators, 1994, Vol. 44, pp. 147-164; http://cds.cern.ch/record/248620/files/p147.pdf
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Equations of Motion and their Solution (2)
B Express the correlation function through the spectral density

xXy' =x," cos® (uN +y, )+ _[ do Z P(w)e" "™ sin(p(N —n))sin( (N —m))

n,m=0

B Perform summation

N-1 N-—
Y — Z T (n=m) sin(,u(N—n))sin(,u(N—m)) i Z /T (n=m) (eiy(N—n) _e—iy(N—n))(e—iﬂ(N—m) _ei,u(N—m))
n,m=0 n,m=0
:% N-1 em)T(n m) (e ip(m—n) +e—i,u(m—n) _eiy(ZN—n—m) _e—iy(ZN—n—m)) dmp]l\;;;erms N
n,m=0
_l N i(@T—p)n i N i(wT+u)n i _l l_ei(COT—ﬂ)N i l_ei(wTJr’U)N i
o s o _4 l_ela)—,u l_ela)+,u
y Z +D e ] + —
_1sin *((@T — )N /2) .\ sin’ (T + 1)N /2)
4| sin (@ —p)/2)  sin®((oT + )/ 2)
sin®(£/2N)  yo
B Account that: =75y — 2 ;5(5 27n)
o I= 27N (Z ST — 1)~ 27n) + Z S((T + 1) — 27m)j
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Transverse Emittance Growth due to Noise
B Combining we obtain

x—N2 =x,” cos” (uN +y, )+ T do g P, ()e "™ sin(,u(N—n))sin(,u(N—m))

—0 n,m=0

=x," cos’ (uN +y,) +— j P (a))dw(z S((oT — p)—27n) + Z S(aT + ) - 27m)j

n=—o

5 TN 2rn+ u 2rn— U
= X, COS (IUN+WO)+YZ(PP( = j+Pp(TD

n=—00

Returning to initial variables and accoun’ring that u=2zv& oy =27/T

X,7 =X, cos” (uN +y, ) + 018 Z( (0)0 n+v) )+P9(a)0(v—n)))

Averaging over all particles, accoun’rlng that both tferms in the sum make
equal contribution and returning to "dimensional variables” we finally obtain

1 Nao,f < 2rn—u
ey e

part

B If all sources of perturbation are statistically independent then for the
entire ring we obtain al

osfsﬁki (2721;—/1)
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Transverse Emittance Growth due to White Noise
B For the white noise in the band Af>>nmaxan/27, nmax >> 1

?:J.nmaxwo P (w)dow=a, i B, (wyn) = o, i Py, (n+v))

Npax @

max N==Nmnax

Accounting this we obtain

That we could obtain much easier
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Suppression of Emittance Growth by Damper

B If inthe above consideration all particles have the same betatron
tune, the actual emittance of the beam does not increase. Only the
beam centroid oscillation grows

B Inreal world, and in a collider in particular, different particles have
different betatron tunes and therefore beam decoheres with typical

decoherence time ~1000 turns.
¢ a transverse damper suppresses the coherent beam oscillations and
could suppress the emittance growth
¢ However, to suppress the emittance growth the damper should damp
the beam faster than it decoheres.

B Steps in our calculations
¢ Consider damping of the entire beam.
¢ Make a transition from matrix formalism to ODE
¢ Find a solution for a single kick of the entire beam
¢ Find solution for a single particle
¢ Obtain equation for the emittance growth
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Entire Beam Damping T, M.V, 76,

B Turn-by-turn fransformation
referenced to the pickup location

Kl 0 0
X, 0= Mkp (Mpkxn T GZ Akxn—kj G= |: :| PiCk“p’ﬁ
k=0 ! g 0 »9, T .t
. . . 1 1 lvl
B Consider the simplest one-turn model with k=90 deg. /

¢ sl|fl0 1 0 0 c(l-g) s ,
X = X, + X, |= X,, C=COSu,s=snu
—-s c\|-1 O g 0 —S(l—g) c

B Solution N
A
1-g)-A
c( g) S =0 03 - g:m,//
e e 7
2 06_‘04) ------ e Aq
g 2 g V= VU=sl .
— Alzzc(l__ji ¢ (1__j _(1—g) 0.4 o
| 2 2 Vot =025 |0 o
02 P ot
_ g | +iu 0 - :
B For small gain: Al,z—(l—gje 0 02 04 06 08
81

B The optimal gain decreases with humber of
turns participating in correction computation , K, as ~1/K
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Transition from Matrix Formalism to ODE

g | +i i . .
Ay, = (l—gje CReTTERx ox ™ o x() = x(0)e T x = x+ip

B For small g we can use ODE for description of motion

X, = xoe(i” A x() =x(0) T x=x+ip
d’x .8 dx
> (207" udo

—+x=0, 96[0,/1]

B The solution is
x(0) = e 8" (x(O) cos @+ p(0)sin 6’) , g/2ux1

Solution for a Single kick of the Entire Beam
~(Axcos@+Apsind)e "

D= (—Ax sin & + Ap cos 6’) g 02

where we assume that the decoherence time is much longer than the
damping time
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Damping of a Single Particle

B Single particle does not produce sufficient signal => no damping
¢ Particle with Av=0 and xo=Ax is damped together with the beam

2 2 .
‘ )§+(1+£j x:_gpE—ge_gg/z“(—Axsin9+cosé?Ap)
do 1 Y7, 7,

where we accounted that dx/d6=p ~(~Axsin@+ Apcos 6)e
B The general solution for initial conditions x=x,+Ax, p=p,+4p:

-g0/2u

= (xo +Ax)COS(Vp9)+(Po +Ap)sin(vpl9)—vii

p 0

(g e "% (—Axsin @'+ cos ¢’ Ap)} sin (vp (6- 6?’)) do’
U

1

t A ' ' dz A
where we accounted #()=3 [r@)sin(Q,=0))dt’ fop d;+9s2<0=f(t), and v, =1+7V
s 0

B |engthy integration in the limit of large 0 (see below) yields:
x:(xo+MAx]cos(v (9)+(p —MAp]cos(v 49)
p 0 g p

g

B Thus, detuning results in a single particle emittance increase
_ P& :[47zAvT A + AP’ :(47rAvT e =y |45 1677 AV (dg)
2 g 2 g - dt g’ dt ),
where we accounted that (v, -1)x=27Av
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Computation of Inteqgrals
B Consider only term with Ax (term with Ap done similarly, same result)

1 :COS<VPH)+V;L,U‘([8 021 gin 9's1n( ((9—«9'))a’6?’

o 0
= cos(vp@) - [sin(vpﬁ)JegH'/Z” sin &' cos(vpﬁ')dé” — cos(vpﬁ)fe_ge'/z“ sin &' sin(vpe’)dﬁ' j
VpH 0 7

¢ Account that: 2sinxcosy =sin(x+y)+sin(x—y), 2sinxsiny =cos(x—y)—cos(x+y)

and drop fast oscillating terms

I :COS(V”H)_vg,u (sin(vlﬁ)ji ~&0/2u sm((v -1’ )d0’+cos v,0 jee 0124 cos (V ~-1)¢’ )dé?'j
p 0 0

¢ Inthe limit of large &
I=cos(v,0)--2 (Sin(vpe)L 1 —CC]+COS<VP9)£ 1 +CCN
1 2 1—

Vplu 21 _e—g/Z,uﬂ'(Vp—l) e—g/2,u+i(vp—l)

g/2u<<1 scos(v 0)— 8 sin(vpﬁ) 1 . +COS(VP‘9) 1 n
Faeos(v,0) vpu( 2i [—(—g/2ﬂ+i(v -1)) CCJ 2 {(—g/2,u+i(vp—l)) CC]]

_COS(V 9) (2ﬂg(‘/ —1)Sm(‘/ 9)+g COS(V H)J gT”_(L’;II) >2'U(Vp_1) siIl(Vp@)
v, g’ +4u° (vp—l) » g
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Suppression of Emittance Growth by Damper

B In the above calculations we assumed that g>>Av. Otherwise, the
problem would be much more complicated because we would need to
account the beam decoherence in computation of damper response.

B Therefore, the obtained answer
de 1672 Av? (dg]
dt g’ dt ),

is justified for g>>Av only.
B For practical estimates, since there is no suppression for small g, we
use an interpolation

de 167° Av? (dgj
0

dt g 416> Av? \ dt
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Problems

1 t 4 . 4 !
1. Prove that 1) = Q_If(t )sin (Q,(t=19)dt" g the solution of the following equation
s 0

d’o
J7 +Qs2¢:f(t) with zero initial coordinates

2. Rewrite equations of longitudinal motion for low frequency noise in bending magnets which
can drive the longitudinal emittance growth. Make estimates for the LHC (C=30 km, Q=40)
and Tevatron (C=6 km, Q=20)

sin®(£/2N)
3. Prove that sin2(§/2)

222 527N Y 8(E—27n)

n

4. Compute the rms tune spread due to head-on beam-beam effects in round beams. Estimate
corresponding decoherence time. Assume round beams of the same rms sizes and pBx=fy.

5. Estimate acceptable value of white noise in the LHC dipole in the absence of emittance
growth suppression by transverse damper (Nqip=1232). Assume noise in different dipoles
independent. Compute corresponding spectral density assuming 5 kHz band.

6. Extend the equation for the emittance growth suppression by damper so that in addition to
external noise it would include the damper noise. Reference the damper noise to the rms
resolution of damper pickup.
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