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Objectives  
 In a collider the beam should stay for a long time  
 The growth rates for beam emittances and bunch length should be 

sufficiently small 
 In a properly built machine the IBS typically dominates  
 However, the RF noise, if not properly addressed, may result in 

unacceptably large longitudinal emittance growth 
 Proton bunches are long 

 Therefore, both the phase and amplitude noises are important  
 Additional complication originates from non-linearity of potential well. 

It is important for hadron beams which, typically, take large fraction of 
RF well.  

 Similar to the longitudinal degree of freedom, noise in bending 
magnetic field and  dampers leads to transverse emittance growth 
 Proton colliders have large circumference => small revolution 

frequency => more susceptible to noise due to its fast growth 
with frequency decrease  
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Correlation Function and Spectral Density 
 For a complex function approaching zero at ± infinity we have 
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 Introduce correlation function *( ( ) ( )K f t f t     and express it 
through Fourier harmonics  

* * (( ) ( ) i t i tf t f t f f e e d d  
   

 
  


 

     

 Since different harmonics in a random process do not correlate and 
diverge with integration time, T, we put: * ( )f f P           

 
* * (( ( ) ( ) (i t i t iK f t f t f f e e d d P e d   

      
  

  


  

         

 Thus, we obtained the Wiener–Khinchin theorem  
1

( ) ( ) , ( ) ( )
2

i iK P e d P K e dt     


 


 

    



Lectures 7&8, “Emittance Growth due to Noise in RF and Magnets”, V. Lebedev     Page | 5 

Another Way to Introduce the Spectral Density 
 To prevent a divergence of random function harmonic f, we redefine 

it in the following way   
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Relationship between Field Energy and Spectral 
Energy 

 Relationship between 2
( )f t dt




  and 2

f d 



  

 Fourier transform is applicable if ( ) 0tf t  .  

Then we can bind f(t) and f 
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Shot (Schottky) Noise 
 We look for a spectral density of sequence of equal pulses which are 

located randomly in time: ( ) ( )n
n

U t u t t   
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Longitudinal Emittance 
Growth due to RF Noise  
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Equations of Longitudinal Motion 
 In the absence of perturbations  
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 Fluctuations of RF phase and amplitude result in 
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 First, we consider a small amplitude (i.e.) linear motion  
and RF phase fluctuations. Then 
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Spectral Density and Correlation Function  
 Correlation function 

( ) ( ) ( )K t t        => 1 2 1 2( ) ( ) ( )K t t t t    

 Wiener–Khinchin theorem  
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 Particle motion under random phase fluctuations  
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Computation of integral  

Make substitution 
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Recollecting connection between the correlation function and the 

spectral density we finally obtain:    
2 2( ) ( )s s

d
t P

dt      



Lectures 7&8, “Emittance Growth due to Noise in RF and Magnets”, V. Lebedev     Page | 12 

Bunch Lengthening due to Amplitude Noise 
 Equation of motion for the small amplitude RF voltage fluctuations: 
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In perturbation theory we replace  in RH side by  0 sin st   
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Practical Estimate  
 Let’s consider Tevatron: fs=s/2 = 35 Hz, initial bunch length 30 cm 

and RF bucket length of 5.65 m (53.1 MHz) 
 Require the bunch lengthening 10% after in 10 hours 

2 2 2
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0
0

2
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2 2 2 6.5 10

10 3600 565 s

fin

fin

d T d
T
dt dt
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 Corresponding spectral densities  
12 1 11 14.3 10 s , 3.8 10 suP P
        

 Corresponding rms fluctuations for the white noise in 100 Hz 
band 

2 5 2 44 7.3 10 rad , 4 2.2 10 raduP f u P f             
Here 4 accounts transition from “physical” to “technical” definition of 
the spectral density 

 Next, we see how it works in non-linear RF motion 
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Action-Phase Variables 
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Fokker-Planck Equation  
 Introduce the diffusion equation  

in the following form: 
 Changes in average action/energy  
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Diffusion in Harmonic RF  
 Motion non-linearity couples the diffusion to higher harmonics of 

synchrotron frequency [*] 
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[*]“Accelerator Physics at the Tevatron Collider”, edited by V. Lebedev and V. Shiltsev, Springer, 2014. 
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Final Remarks to the RF noise 
 To prevent the longitudinal emittance growth a hadron collider 

requires high quality RF, both in the RF phase and the RF amplitude 
 Modern high quality RF generators are well within these requirements 

for the master oscillator 
 Microphonics in RF cavities as well as noise in power amplifiers 

may excite RF noise to unacceptable level 
 To address this problem in the Tevatron Run II the phase 

feedback was used. It stabilized the RF phase relative to the 
master (reference) oscillator  

 As will be seen in the second half of the lecture the longitudinal 
damper may be helpful to reduce effect of phase noise 
 However, it will require very small noise floor in detecting of 

synchrotron motion 
 Noise in the bending magnetic field at synchrotron frequency 

harmonics works the same way as RF!!! 
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Transverse Emittance 
Growth due to Noise in 

Magnets and its Suppression 
by Transverse Damper 
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Equations of Motion and their Solution*  
 In difference to synchrotron tune the betatron tunes are large (close 

or above f0). That completely changes beam response to a perturbation 
 First, we consider one point-like dipole perturbation   
 To simplify equations, we transit to new (normalized) variables  
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* V. Lebedev, et.al. “EMITTANCE GROWTH DUE TO NOISE AND ITS SUPPRESSION WITH THE FEEDBACK SYSTEM IN 
LARGE HADRON COLLIDERS”, Particle Accelerators, 1994, Vol. 44, pp. 147-164; http://cds.cern.ch/record/248620/files/p147.pdf   
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Equations of Motion and their Solution (2)  
 Express the correlation function through the spectral density  

       
1

2 2 2 ( )
0 0

, 0

cos ( ) sin sin
N

i T n m
N

n m

x x N d P e N n N m     
 





      

 Perform summation 
               

        

1 1
( ) ( )

, 0 , 0

1
2 2( )

2
, 0

2 21 1
( ) ( )

0 0

1
sin sin

4

1

4

1

4

N N
i N n i N n i N m i N mi T n m i T n m

n m n m

N
i m n i m n i N n m i N n m Ni T n m

drop last terms
n m

N N
i T n i T n

n n

e N n N m e e e e e

e e e e e

e e

    

   

   

 
 

      

 


        



 
 

 

      

    

 

 



 

 
 

 
 

2 2( ) ( )

( ) ( )

2 2

2 2

1 1 1

4 1 1

sin ( ) / 2 sin ( ) / 21

4 sin ( ) / 2 sin ( ) / 2

i T N i T N

i T i T

e e

e e

T N T N

T T

   

   

   
   

 

 

              
  

     

 

 Account that:  
2

2

sin ( / 2 )
2 ( 2 )

sin / 2
N

n

N
N n

    







   

  
2

(( ) 2 ) (( ) 2 )
4 n n

N
T n T n

        
 

 

        
 
   



Lectures 7&8, “Emittance Growth due to Noise in RF and Magnets”, V. Lebedev     Page | 21 

Transverse Emittance Growth due to Noise 
 Combining we obtain  
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Returning to initial variables and accounting that 02 & 2 /T      
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Transverse Emittance Growth due to White Noise  
 For the white noise in the band f >>nmax0/2, nmax >> 1 
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Accounting this we obtain 
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That we could obtain much easier 
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Suppression of Emittance Growth by Damper 
 If in the above consideration all particles have the same betatron 

tune, the actual emittance of the beam does not increase. Only the 
beam centroid oscillation grows 

 In real world, and in a collider in particular, different particles have 
different betatron tunes and therefore beam decoheres with typical 
decoherence time ~1000 turns. 
 a transverse damper suppresses the coherent beam oscillations and 

could suppress the emittance growth 
 However, to suppress the emittance growth the damper should damp 

the beam faster than it decoheres. 
 Steps in our calculations 

 Consider damping of the entire beam.  
 Make a transition from matrix formalism to ODE 
 Find a solution for a single kick of the entire beam 
 Find solution for a single particle 
 Obtain equation for the emittance growth 



Lectures 7&8, “Emittance Growth due to Noise in RF and Magnets”, V. Lebedev     Page | 24 

Entire Beam Damping 
 Turn-by-turn transformation  

referenced to the pickup location 
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 Consider the simplest one-turn model with pk=90 deg.  
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 The optimal gain decreases with number of 
turns participating in correction computation , K, as 1/K 
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Transition from Matrix Formalism to ODE  
/2

1,2 1
2

i i gg
e e        

  =>    /2 /2 /
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 For small g we can use ODE for description of motion 
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 The solution is  
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where we assume that the decoherence time is much longer than the 
damping time  
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Damping of a Single Particle 
 Single particle does not produce sufficient signal => no damping 

 Particle with =0 and x0=x is damped together with the beam 
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 Thus, detuning results in a single particle emittance increase 
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Computation of Integrals 
 Consider only term with x (term with p done similarly, same result)  
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 Account that: 2sin cos sin( ) sin( ), 2sin sin cos( ) cos( )x y x y x y x y x y x y         
and drop fast oscillating terms  
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Suppression of Emittance Growth by Damper 
 In the above calculations we assumed that g>>. Otherwise, the 

problem would be much more complicated because we would need to 
account the beam decoherence in computation of damper response.  

 Therefore, the obtained answer  
2 2

2
0

16d d

dt g dt

       
   

is justified for g>> only. 
 For practical estimates, since there is no suppression for small g, we 

use an interpolation 
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Problems  

1. Prove that  
0

1
( ) ( )sin ( )

t

s
s

t f t t t dt     
   is the solution of the following equation 

2
2

2
( )s

d
f t

dt

    with zero initial coordinates 

2. Rewrite equations of longitudinal motion for low frequency noise in bending magnets which 
can drive the longitudinal emittance growth. Make estimates for the LHC (C=30 km, Q=40) 
and Tevatron (C=6 km, Q=20) 

3. Prove that  
2

2

sin ( / 2 )
2 ( 2 )

sin / 2
N

n

N
N n

    







   

4. Compute the rms tune spread due to head-on beam-beam effects in round beams. Estimate 
corresponding decoherence time. Assume round beams of the same rms sizes and x=y. 

5. Estimate acceptable value of white noise in the LHC dipole in the absence of emittance 
growth suppression by transverse damper (Ndip=1232). Assume noise in different dipoles 
independent. Compute corresponding spectral density assuming 5 kHz band.   

6. Extend the equation for the emittance growth suppression by damper so that in addition to 
external noise it would include the damper noise. Reference the damper noise to the rms 
resolution of damper pickup.  


