

Fourier and Real Time Diffractometry at the IBR-2 and Science

Sergey Sumnikov

Correlation Fourier diffractometry at the IBR-2 reactor

1. HRFD – High Resolution Fourier Diffractometer

- atomic and magnetic structures
- thermodiffractometry in real-time mode
- 2. FSD Fourier Stress Diffractometer - residual stress studies
- 3. FSS Fourier Stress Spectrometer - residual stress studies

Fast Fourier chopper at HRFD

High Resolution Fourier Diffractometer (HRFD)

High resolution Fourier diffractometer To precise study crystal structure and microstructure of crystalline powders

modernization of the HRFD detector system: 2022-2024

type of detectortotal area of sensitive elementstotal solid anglethickness of the screens

scintillation ZnS(Ag) with time-focusing geometry $\sim 13m^2$ ~ 2.0 sr (12.5 times greater than the existing one) 0.42 mm

Structural and magnetic (spin-flip) phase transitions in Fe₃Ge alloy

Temperature dependencies of the specific magnetization at heating and cooling.

The 2D map of the evolution of the neutron diffraction patterns of the annealed-48 Fe3Ge sample measured *in situ mode upon:* continuous heating up to 1000 K (2 K/min), exposure at this temperature for 1 h, cooling down to 873 K, exposure at this emperature for 4 h, and cooling down to RT (2 K/min).

Neutron diffraction pattern (high resolution) collected at RT and processed by the Rietveld method. The vertical bars are calculated peak positions of the D0₁₉, L1₂, and B8₂ phases.

Magnetic moments of the both phases at heating and the DO_{19} phase at cooling. The components in basal plane (μ_x) and along hexagonal axis (μ_z) are shown.

A.M. Balagurov et al. Physical Review Materials, 2023

Study of materials for Li-ion power sources at HRFD in real-time mode

V-added ($\delta \approx$ 1%) C ≈ 10 Ah

 $LiFePO_4:V_{\delta} - Li_xC_6$ based batteries Size = 8.2 x 128 x 155 mm

Taiwanese team at HRFD

Charge/discharge system and control PC

KIKUSUI PFX2011 potentiostat

In situ ND of LiFePO₄-based battery

Evolution of the neutron diffraction patterns measured during three charge/discharge (~70 hours) cycles. "Anode window" is marked.

3D view of the "anode-window" region for all three cycles of charge/discharge processes

Enlarged chart of the initial (discharged) state with pure graphite line (d = 3.35 Å) and stepwise appearance of LiC₂₄ (d = 3.47 Å) and LiC₁₂ (d = 3.47 Å).

Operando study of phase separation in LiNi_{0.8}Co_{0.15}Al_{0.05}O₂

Bobrikov et al. Electrochimica Acta 2018

Electrochemical laboratory development

Some equipment:

- 1. Metrohm Fischer titrator 917
- 2. Despergator up to 25000 rpm and other mixers
- 3. Potentiostat BIOLOGIC SP-300
- 4. High temperature inert gas furnace up to 1200° C
- 5. Storage of d-electrolytes for neutron scattering experiments (DMC, PC, EC)
- 6. 3-axes stage for non-standard samples and electrochemical cells at X-ray diffractometer,
- 7. Glove box with atmosphere controlling systems etc.

Collaboration JOINT INSTITUTE JINR MIS_&S FOR NUCLEAR RESEARCH Equilibrium Non equilibrium 500 17-19 1100 1100 %Ga **B2** 400 **Q** SC Temperature, K 006 008 1000 D0₁₉ 3/2 λ₁₀₀ (x 10⁻⁶) $\mathbf{\Sigma}$ **B2** 300 Temperature, A2 A2 900 900 200 800 100 27%Ga 700 700 D03 15 20 25 30 35 40 5 10 0 600 600 Gallium content (at.%) 20 25 30 10 15 30 35 10 15 20 25 35 Ga, ат. % Ga, ат. %

Intermetallic Fe-based compounds with giant magnetostriction

Phase transitions in Fe-27Ga-RE, RE = Dy, Er, Tb, Yb

D03

B2

D0 19

STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS

Cluster structure of phase separated state of Fe-27Al and Fe-27Ga

Balagurov, A.M., Bobrikov, I.A., Sumnikov, S.V., Golovin, I.S., (2018) Acta Materialia 153 P.45.

Thanks for your attention!

