

Development of neutron

detectors with boron converter in FLNP JINR

V. Bodnarchuk

- Neutron detectors at instruments at the IBR-2 reactor. Current status
- Advances in B₄C deposition technology in FLNP JINR
- Projects of new detectors with boron converter
- Development of the infrastructure for the production of detectors with boron converters

Monitor counter

Site of instruments

<u>13</u> INSTRUMENTS INCLUDE IN USER PROGRAMM

Diffraction:	Sma	ull-angle	Inelas	stic		
HRFD	YuMo)	scatte	ering:		
RTD	Refl	ectometry:	NERA	8.		
DN-6	GRAI	NS		•		
EPSILON	REM	JR		•		
SKAT	REFL	EX	REGA	IA		
DN-12						
FSD	Under construction:					
	 SANSARA – small angle + imaging 					
 BJN – inelastic scattering 						
Detector type	2	Number	•			

Detector type	Number				
³ He based detectors					
Single counters	> 100				
PSD, 200x200 mm ²	7				
Ring detector of different construction	3				
Scintillation detectors					
ZnS(Ag)/ ⁶ LiF	2				
Li-glass	2				
¹⁰ B based detectors					

1

IBR-2 User Club website: https://ibr-2.jinr.ru/

$${}^{10}B + n \to {}^{7}Li^* + {}^{4}He \to {}^{7}Li + {}^{4}He + 0.48MeV\gamma \text{-ray} + 2.3 MeV \quad (94\%) \\ \to {}^{7}Li + {}^{4}He + 2.79MeV \quad (6\%) \\ \mathbf{\sigma}_{_{\rm B}} = \mathbf{3840} \text{ barns @1.8 Å}$$

 $n+^{3}He \rightarrow {}^{3}H+p+0,77 MeV$

σ_{He} = 5328 barns @1.8 Å

$$\frac{\sigma_{\text{B}}}{\sigma_{\text{He}}} \sim 0.7$$

Options for use converter based on ¹⁰B:

- 1. Gaseous BF₃
- 2. Solid State thin films B or B_4C

Development of ¹⁰B based detector technology. Pro and Contra

Gas BF₃

Advances:

- Easy to access
- Opportunity for mass production of detectors

Drawbacks:

- > Electronegative gas
- > Toxic
- > 1 counter with ³He = 3 counter with BF₃

Gas ³He

Advances :

- Inert gas
- High capture cross section
- Moderate resolution for PSD based on counters with resistive anode

Drawbacks :

- > High price
- > High pressure in chamber \implies thick membrane
- Complicated camera cleaning procedure
- For PSD nonuniformity over the surface
- Gas replacement every 5 years
- Max count rate ~ MHz
- Error in the position defining of neutron capture
- Space resolution limit ~ 1 mm

Development of ¹⁰B based detector technology. Pro and Contra

Gaseous detectors with solid state converters with ¹⁰B

Advanced:

- Operation at atmospheric pressure
- ➤ Gas mixture is blown through the chamber → no aging effect
- Localization of the neutron capture site
- > High temporal (ns) and space resolution (\leq 1 mm)
- \blacktriangleright Easy to produce of a large area detection plane ($\ge 1m^2$)
- Reliability of a construction
- Cheapness of materials

Drawbacks:

 \blacktriangleright Low registration efficiency (less than 5% for the layer 2 μ)

Aluminium entrance-window

Aluminium drift-electrode		
Boron-layer		
readout structure		

Free path length of neutron in ${}^{10}B_4C l_n \sim 30\mu$; $l_{\alpha} \sim 3\mu$; $l_{Li} \sim 1.3\mu$ R. Hall-Wilton, New Developments in Detector Technology at ESS

Efficiency

FLNP JINR – CSNS IHEP Workshop, Dubna, 13-15 May 2024

convertei

stopping gas

converter

Multi-Grid Detector: example of successful B₄C based detector development

Multi-Grid Detector Design

Multi-Grid

DI.On

10

12

14

16

18 20

³He tubes – 1 inch – 4.75 bar

Multi-Grid Detector: example of successful B₄C based detector development

Anastasopoulos M., et.al. (2017). Multi-Grid detector for neutron spectroscopy: results obtained on time-of-flight spectrometer CNCS. Journal of Instrumentation, 12(04), P04030–P04030. doi:10.1088/1748-0221/12/04/p04030

B₄C thin film production in collaboration with State University Dubna

 B_4C

Magnetron sputtering machine VCR-300 (LLC ROBVAC, Fryazino)

Amorphous and uniform structure of thin B₄C film With the density 2.4 g/cm³, durable, flexible

1<u>00</u> nm B₄C Si

The structure of the thin B_4C film by Linköping University, Sweden, 450[°]C

(S.Schmidt et.al., J. Mater Sci (2016) 51:10418–10428, DOI 10.1007/s10853-016-0262-4)

B₄C thin film production in collaboration with State University Dubna

Thin B_4C film (different thickness) on Al plates (0.5mm) Area of uniform coverage $\sim 200 \text{ x} 300 \text{ mm}^2$

Thin $B_4 C$ (1µ) on Al foils (20µ)

100nm 300nm 200nm Reels of thin B_4C film on mylar

Thin $B_4C(1\mu)$ film on mylar

Straw tubes

Ultrasound welding machine

Welded seam

1 straw tube detector

GEANT 4 simulations

30-layer straw tubes detector(D=1cm, converter ¹⁰B)

Efficiency of 30-layer straw detector with 90⁰ beam angle.

Multi-tube detector

Multi-layer detector simulation

Efficiency calculation of a detector consisting of 15 chambers (30 layers of B₄C)

Geant4

10

12

Efficiency

Neutrons are scattered elastically w/o capture in det.

Neutrons are scattered elastically and captured in det.

Multi-wire detector project

Zalikhanov's (DLNP JINR) narrow gap chamber

Parameters		Narrow gap detectors	MWPC
		Proportional mode	
Gas amplifie	f and a second se	10 ⁵	
Anode-catho	de distance, mm	1 - 2	5 - 10
Anode wire s	tep, mm	≤1	≥ 2
Radius of ava	lanche area, mm	0,3 – 0,5	0,06 - 0,2
Current of el	ectron avalanche, μA	0,5	0,5
Anode signal	duration (in base), ns	20	100
Amplitude sp	oread, ΔΑ/Α, %	100	100
Time resolut	ion (FWHM), ns	5	40
Limit of coun	t rate, c ⁻¹ cm ⁻²	10 ⁸	5*10 ⁵
Radiation res	istance, Кл/см	10	0,2

Assembly and testing of a detector with an entrance window of 200x200 mm, Wire-pitch 1.5 mm, Gap anode-kathode 2 mm, 128 channels, Detector speed - 8.4 ns (FWHM), Operating voltage – 2450 V

H. Kalmar, B. Zalikhanov et al. New method for constructing Multiwire chambers, Nucl. Inst. and Meth., A307, 1991. p.279

Multi-foil detector project

Project of the neutron detector based on Zalikhanov's (DLNP JINR) narrow gap chamber

H. Kalmar, B. Zalikhanov et al. New method for constructing Multiwire chambers, Nucl. Inst. and Meth., A307, 1991. p.279.

Number of elastically scattered neutrons with inclination 1, 2, 5^0 (material - Al foil 0.5 mm)

Multi-foil detector project

Expected performance

Anode pulse width (in base) $- \ge 20$ ns Temporal resolution (FWHM) $- \ge 5$ ns Count rate $- \le 10^8 \text{ s}^{-1} \text{sm}^{-2}$ Space resolution $- 0.2x2.5 \text{ mm}^2$ Converter thickness ${}^{10}\text{B}_4\text{C} - 2.5\mu$ Efficiency at 1.8 Å ~ 65%

Drawbacks:

The precise positioning of the detector is needed to provide the value of 2° of incident angle to the converter planes

Multi-foil detector project

RPC project

Resistive plane chamber 1D ¹⁰B-RPC with delay line and digitizer CAEN 6730 based read-out

Pulse shape discrimination (PSD) is parameter for difference in the waveform shapes PSD = $\frac{Q_{long} - Q_{short}}{Q_{long}}$

PhD student Maria Petrova holds the experimental module of RPC

L. M. S. Margato, et. al. Multilayer 10B-RPC neutron imaging detector Journal of Instrumentation 15(06):P06007-P06007, DOI:<u>10.1088/1748-0221/15/06/P06007</u>

Development of infrastructure

With financial support of Russian Federation Ministry of Education and Science, Grant № 075-10-2021-115 from 13.10.2021

Building

of experimental site for detector production

- > Modular machine straight through type with continuous operation
- Substrate size 650x1200 mm, vertical orientation
- Possible option is two side coverage deposition with uniformity of 3% on the square 400 x 1200 mm²
- ➤ Single and multilayer coverage possibility
- Operation mode "there and back"
- Possibility of upgrading with additional technological modules

Spattering machine for B_4C coverage Ferry Vatt company, Kazan, Russia Max. coverage square 400x1200 mm²

Development of infrastructure

With financial support of Russian Federation Ministry of Education and Science, Grant № 075-10-2021-115 from 13.10.2021

Building of experimental site for detector production

Thank You

for your attention

CONTACT US:

 The Frank Laboratory of Neutron Physics, JINR, Joliot-Curie str. 6, Dubna, Moscow reg., Russia, 141980
 bodnarch@nf.jinr.ru