

UCN source with pulsed accumulation of neutrons in a trap

G.V. Kulin, A.I. Frank, V.N. Shvetsov, V.A. Kurylev, A.A. Popov, K.S. Osipenko,

M.A. Zakharov, A.Yu. Muzychka, A.N. Chernikov

FLNP JINR - CSNS IHEP Workshop on the neutron scattering technology and multi-disciplinary research

SNS

FL'nP

Ultra Cold Neutrons

General definition: UCNs are neutrons whose energy is so low that they are reflected under any angle of incidence can be contained in traps

	E (eV)	Т (К)	λ(Å)
Ultra cold	<10 ⁻⁷	≈ (<) mK	>800
Very cold	10-7 - 10-4	10 ⁻² - 10	800 - 30
Cold	(0.1-10)×10 ⁻³	10-120	30-3
Thermal	(10-100) ×10 ⁻³	120-1000	4-1
Resonant	>1		< 0.1

UCNs are important tools for:

Search for the neutron EDM

Measurement of the neutron lifetime

Measurement of angular correlation coefficients of neutron beta decay

Search for neutron-antineutron oscillations

Quantization of neutron states in a gravitational field and search for new interactions

Non-stationary quantum mechanics and neutron optics

Ultra Cold Neutron sources

Ultra Cold Neutron sources

Based on made by B. Lauss

Pulse source and UCN pumping in a trap

F.Shapiro, 1972

 $g = 1 + \frac{1 - \frac{\tau_1}{T}}{\frac{\tau_1}{T} + \frac{\Sigma\mu}{S}}$

$$\begin{split} \tau_1 > \tau - chopper opening time \\ S - active convertor area \\ \Sigma - area of the trap \\ \mu - probability of the UCN lost \end{split}$$

Pulse source and UCN pumping in a trap

F.Shapiro, 1972

 $g = 1 + \frac{1 - \frac{\tau_1}{T}}{\frac{\tau_1}{T} + \frac{\Sigma\mu}{S}}$

$$\begin{split} \tau_1 > \tau - chopper opening time \\ S - active convertor area \\ \Sigma - area of the trap \\ \mu - probability of the UCN lost \end{split}$$

The trap is remote from the moderator due to the presence of biological shielding

Time structure of the beam at the entrance to the UCN trap

! The spread of the UCN flight times will exceed the intervals between pulse

Time structure of the beam at the entrance to the UCN trap

! The spread of the UCN flight times will exceed the intervals between pulse

! The flux of neutrons, which can be trapped after deceleration, has a pulsed structure

Pumping option of the pulsed source – decelerator

During deceleration, all neutrons change their energy by the same value

- ✓ The pulse structure of the "useful" neutrons is remain, but the pulse duration at the entrance to the trap exceeds the initial one.
- ✓ The extraction of neutrons with higher speeds than that of the UCN from the moderator converter provides better conditions for the transportation of neutrons and allows the use of a more efficient converter
- √Since "useful" neutrons covers a small part of the VCN spectrum, such a source can simultaneously serve as a source of UCN and VCN

Decelerator — broadband gradient (adiabatic) spin flipper

G. M. Drabkin and R. A. Zhitnikov. Sov. Phys. JETP, 11, 729 (1960) — Proposed to use spin-flip of neutrons in a non-uniform (gradient) magnetic field to obtain "supercold" neutrons

V.I. Luschikov, Yu.V. Taran. NIM 228 (1984) 159 A.N. Bazhenov, V.M . Lobashev, A.N. Pirozhkov and V.N. Slusar. NIM A332 (1984) 534 S .V. Grigoriev, A.I. Okorokov, V.V. Runov. NIM A384 (1997) 451

Decelerator — broadband gradient (adiabatic) spin flipper

G. M. Drabkin and R. A. Zhitnikov. Sov. Phys. JETP, 11, 729 (1960) — Proposed to use spin-flip of neutrons in a non-uniform (gradient) magnetic field to obtain "supercold" neutrons

V.I. Luschikov, Yu.V. Taran. NIM 228 (1984) 159 A.N. Bazhenov, V.M . Lobashev, A.N. Pirozhkov and V.N. Slusar. NIM A332 (1984) 534 S .V. Grigoriev, A.I. Okorokov, V.V. Runov. NIM A384 (1997) 451

 $\hbar\omega = 2\mu B \quad \longrightarrow \quad \Delta E = 2\mu B = \hbar\omega$

Decelerator — broadband gradient (adiabatic) spin flipper

to decelerate a neutron at a speed of 20 m/s to a speed of 5 m/s

$$\Delta E \approx 2.4 \mu eV \quad B = \frac{\Delta E}{2\mu} \approx 18T \quad f = \frac{\omega}{2\pi} \approx 500 MHz$$

Parameters of adiabatic spin flipper

The adiabaticity parameter $k = \frac{\gamma B_{eff}^2}{\left(\frac{dB}{dz}\right)V}$, where γ is the gyromagnetic ratio of the neutron, V is neutron velocity

Near the resonance point
$$B \approx B_{\Omega}$$
, $B_{eff} \approx B_{1}$ $k = \frac{\gamma B_{1}^{2}}{\left(\frac{dB}{dz}\right)V}$
at $k = 4$ and $V = 16m/s$ $B_{1}^{2} > \frac{dB}{dz} \cdot (2.86 \times 10^{-7})$
For gradient of magnetic field 1.5 T/m $B_{1} \ge 0.7 mT$

Preliminary magnet design

Technical specifications

SuperOx

Magnetic field (peak)	20 T
Bore diameter	120 mm
Bore type	Room temperature
Dimensions	
Length	750 mm
Width	660 mm
Height	1250 mm
Mass (including cryostat, magnet and cooling head)	Less than 1000 kg
Power supply	3-phase 380 V
Consumption	16 kW nominal 30 kW during cooldown)
Magnet wire	Second generation high temperature superconductor (YBCO)
Cooling	Indirect (dry-type)

The work on the design of the magnetic system is carried out in co-operation with SuperOx company

SuperOx

High frequency resonator

The birdcage resonator is a widely used in MRI

- Ability to generate a homogeneous magnetic field over a large volume.
- Allows for a high degree of control over the magnetic field's frequency and amplitude.

Birdcage of UCN spin-flipper (UCNA experiment)

High frequency resonator

The birdcage resonator is a widely used in MRI

- Ability to generate a homogeneous magnetic field over a large volume.
- Allows for a high degree of control over the magnetic field's frequency and amplitude.

Birdcage of UCN spin-flipper (UCNA experiment)

Q-factor $\approx 10^3$, $B_1 = 0.7 mT$, f = 500 MHz, Input power $\approx 4 kW$! The resonator will operate during the pulse only

! The flux of neutrons, which can be trapped after deceleration, has a pulsed structure! the pulse duration at the entrance to the trap exceeds the initial one

! The flux of neutrons, which can be trapped after deceleration, has a pulsed structure! the pulse duration at the entrance to the trap exceeds the initial one

The slower the neutrons, the more time they spend on deceleration

Dispersion of deceleration times

rectangular neutron guide: 60 mm×60 mm

Dispersion of deceleration times

"Velocity invertor" to compensate deceleration times dispersion

! The slower the neutrons, the more time they spend on deceleration

"velocity invertor" inverts neutron velocities in order to partially compensate the dispersion of the time of subsequent deceleration and to minimise bunch duration at the trap entrance

$$\delta t_{trap} = \delta \tau - \delta t$$

A time-dependent magnetic field invertor

Neutrons change their energy when passing a homogeneous in space time-varying magnetic field

L.Niel, H.Rauch, Z. Phys.B. – Condensed Matter 74, 133 (1989)

Time of flight of the bunch	$\Delta t = t_2 - t_1 \approx 10 - 15 ms$
Neutron velocity	$V \approx 20 m/s$
Lens length	$L \approx 40 cm$
Time of flight of the lens	$t_{fl} = 20 ms$
Repetition period	T = 200 ms
Magnetic field	B = 1.5 T

Most probable conception of UCN source @ periodic pulsed reactor

Pulsed valve

As a valve it is considered to use a gradient spin flipper, located in the area of decreasing of the flipper-decelerator field. Approximately in the 0.1-0.2T field

- Spin of polarised neutrons stored in the trap is oriented in such a way that the magnetic field of the flipperdecelerator is a barrier for them
- The high frequency of the flipper is applied only during the time of the arrival of the bunch. During this time, it passes neutrons in both directions

Liquid H₂ converter

Designed by A.Yu. Muzychka

Neutron density in a spherical UCN trap (liquid H₂ converter)

Designed by A.Yu. Muzychka

For more effective converter, like solid D₂, the neutron density can be increased by 30 times

Thanks for the discussions to E.V. Lychagin, S.V. Gurskiy, S.V. Mironov and V.I. Bodnarchuk.

Special thanks to the staff of SuperOx company K.A. Baburin and V.I. Shcherbakov.

Thank you for your attention!!!

