

FLNP JINR – CSNS Workshop on the neutron scattering technology and multi-disciplinary research International Conference Centre, Dubna

Working with the CAEN DT5560SE digitizer

a project for processing signals from a helium-3 filled positionsensitive detector.

Speaker: electronics engineer

Department of spectrometer complex IBR-2 FLNP JINR

Anastasiya Kazliakouskaya

nasta94@jinr.ru

FLNP JINR – CSNS May 13-15, 2024

Digitizer in the data acquisition system

Digitizer – is an electronic device that continuously acquires analog pulses, passing through an analog input stage of signal conditioning, an **analog-to-digital conversion** by fast ADCs, and **storage** of the digitized samples as event data into digital memories, where they can be **read out** by a host computer through fast communication interfaces (USB, VMEbus, Optical Link, Ethernet).

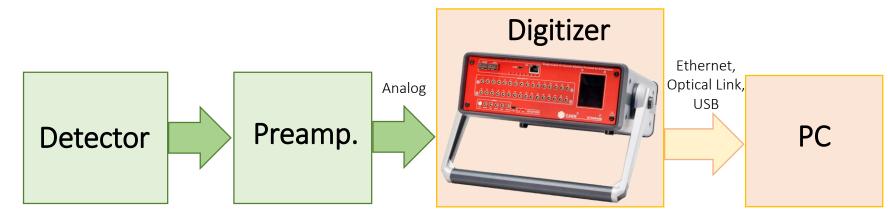


Figure 1. Structure of a digitizer-based data acquisition system

Digitizer DT5560SE:

- 32 channel, **14-bit @125 MS/s** Digitizer,
- Programmable analog frontend,
- Xilinx Zynq-7000 SoC with **open FPGA**,
- Supported software tool by SCI-Compiler,
- Board-to-board synchronization, etc.

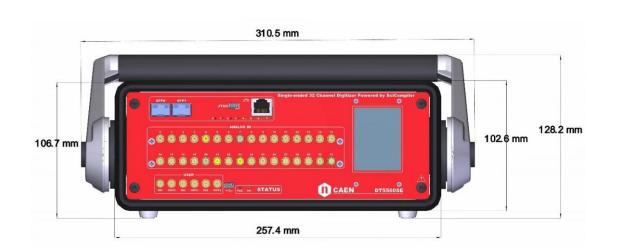


Figure 2. Front panel view.

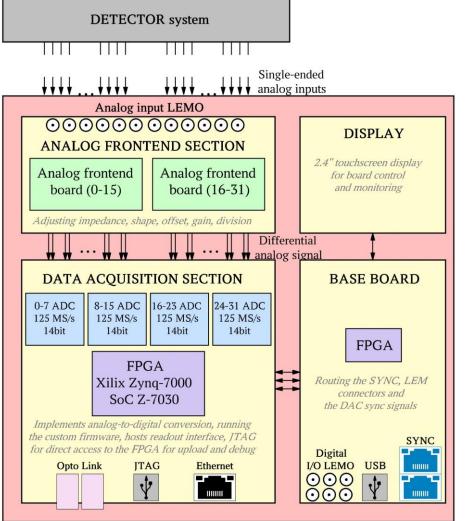
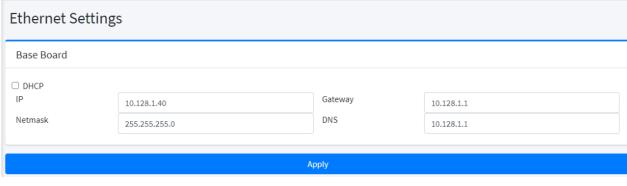


Figure 3. Block diagram of DT5560SE digitizer device



/// DT5560SE	=	DEVICE PID: XXXXX						
 ☆ Device Status ☆ Analog Settings • I/O Settings ☆ BEthernet Settings 	Device Status DEVICE MODEL: DT55605E-A Device Info IP: XXX.XXX.XXXX USB: XXX.XX PID: XXXXX Pramework 2024.03 Release:	K.XXX.XXX .06 ▲ Upgrade Device	I/O Settings Clock Input Source	nternal 🗸				
	Base Board Info Firmware 21041200 Temperature: 30.6 °C Release:	Analog Boards Info Temperature 1: 42.7 °C Temperature 2: 44.4 °C	DAQ Sync In	0	Sync Out	0	Lemo Out	0
	DAQ Info			.emo ln 1 🗸		Sync In 0 V Sync In 1 V	1	DAQ Sync Out 0 V DAQ Sync Out 1 V
	Firmware Name: NEW_QMP4 Change DAQ Firmware Release: 20240408 Firmware Temperature: 48.7 °C Sownload Register		2 L	.emo ln 2 🗸		Sync In 2 👻	2	DAQ Sync Out 2 💙
	Version 2023.12.06. All rights reserved.	CAEN NUCLEAR Faith for Descent NU Instruments		C: _			_	
Figu	Figure 4. Embedded Web interface home page.			Fig	ure 6. I/O Se	ettings page	e.	

Figure 4. Embedded Web interface home page.

aper						
2	DC	*				
1						
1	Channel	50 Ohm Termination	Division by 5	Offset Even (mV)	Offset Odd (mV)	Gain
1	Channel 0-1	50 Ohm Termination	Division by 5	Offset Even (mV) 0.00	Offset Odd (mV) 0.00	Gain 1

Figure 7. Ethernet Settings page.

SCI-COMPILE

Open FPGA

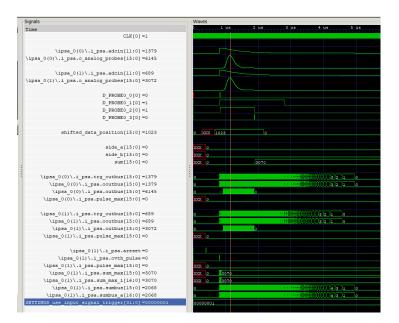
FLNP JINR – CSNS May 13-15, 2024

Graphical Programming Language for CAEN Open FPGA boards

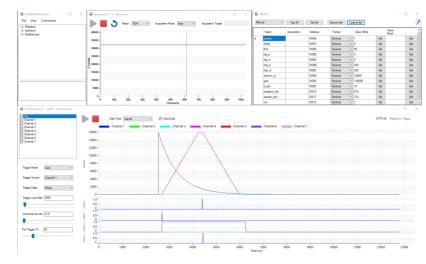
- Block Building Interface
- Automatic Firmware Code Simulation
- Debug with Resource Explorer

Sci-Compiler uses a set of high level functionalities (IP blocks) to mask the real firmware coding, which improves and speeds-up the R&D phase. Placing and interconnecting the available blocks on a diagram, it is able to automatically generate a VHDL code that implements the required function and deploy it to the FPGA.

S Nucle	ear Instrum	ents SciCon	piler (2024	4.1.6.1) -	NEW_QM	P3			
-	Home	Tools Box	View Sin	nulation	Compile	Hardware			
	1010 0111			Ţ,		0	=	:	
Misc	Bitwise Operations *	Sub-design	State Machine *	Boolean Logic *	Sequential Logic *	Timer Counters *	Comparator *	Mux	Delay Memory *
	I/O, Wire	es, Subdesign				Log	gic		
				2	7		_		
		G	\mathbf{O}		22	01011			
		Math Filters		Signal Analysis *	Trigger	Signal Generator +			
			Signal F	Processing		Testing			


Figure 8. Tools Box with 100+ virtual blocks that works exactly as real laboratory instrumentation

Automatic Firmware Code Simulation


Sci-Compiler allows to simulate the firmware code much faster than compilation, so the user can have a quick response on *how the Signal Processing Algorithm implemented* in the firmware is working. In fact, it is possible to add some input to the simulation (like an external signal) and set probing points in the block diagram. In this way it is possible to *monitor the electrical signal* in that point.

GTKWave is an analysis tool used to perform debugging on Verilog or VHDL simulation models.

Resource Explorer

Sci-Compiler offers a *built-in tool*, called Resource Explorer, to connect supported boards and test the features of the FPGA firmware. This tool allows to manage all Local Bus readout blocks placed in the firmware diagram, therefore it gives the possibility *to read and write* the configuration registers (i.e. Signal Processing parameters) and *shows the readout instruments* like Spectrum, Oscilloscope, etc. in a GUI.

Measurement setup for testing digital processing system

Helium-3-filled linear position-sensitive detectors (LPSDs) are based on the position-sensitive proportional counters design and have been widely applied to neutron scattering instruments owing to the high detection efficiency, the excellent neutron/gamma discrimination, and the ability to construct the detector with large area coverage.

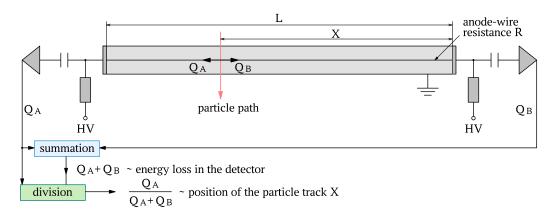


Figure 9. Schematic diagram of position determination in a Helium-3 filled position sensitive proportional counters

K			ризводственная фирма Консенсус c-Production Firm CONSENSUS		
³ Не – счетчи ³ Не – neutro	ік медленных ней n counter	Гелий–PSD–8/600–12,5/Л Helium–PSD–8/600–12,5/L			
Effective length, mm		586	Own background, count/s	0.15	
³ He pressure, atm		10	Variation of sensitivity regarding the sample, %	5	
Operating voltage for proportional mode, V		900	Position resolution, mm	4 max*	
Operating voltage for	PSD mode, V	1350	Anode resistance, Ohms/m	9400	
Peak width at half height, %		15 max	Operation temperature range, °C	-50÷60	
Variation of the position of the mean value in a	•	15 max	Weight, g	37	

* - The position resolution essentially depends on the used measuring equipment.

This feature is taken from the Consensus website: *consensus-group.ru*

Measurement setup for testing digital processing system

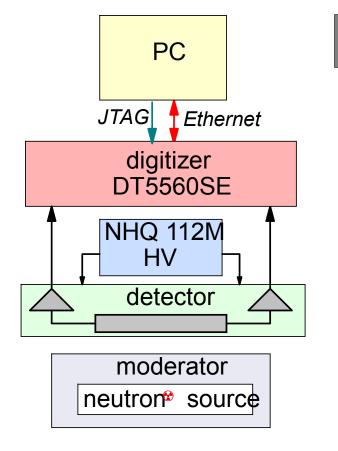


Figure 10. Block diagram connecting of installation

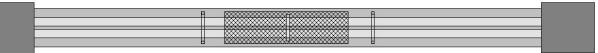


Figure 11. Schematic representation of the tubes and placement of a cadmium mask with a slide.

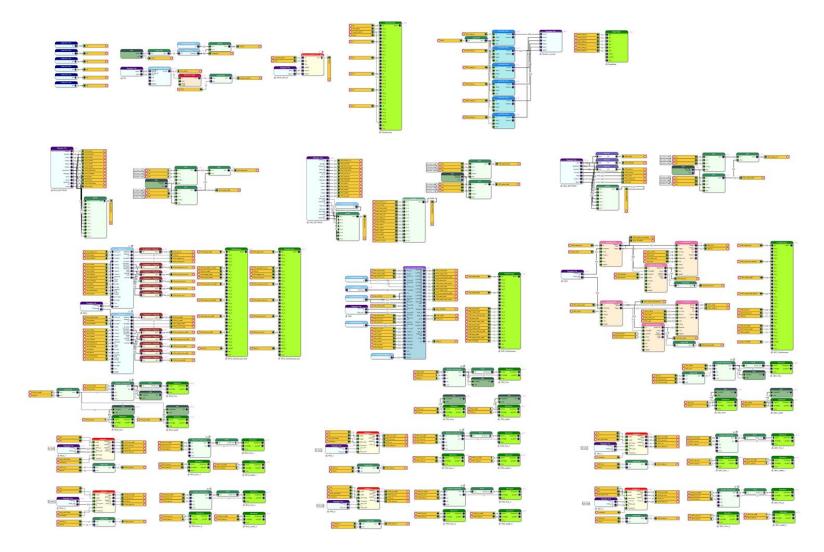
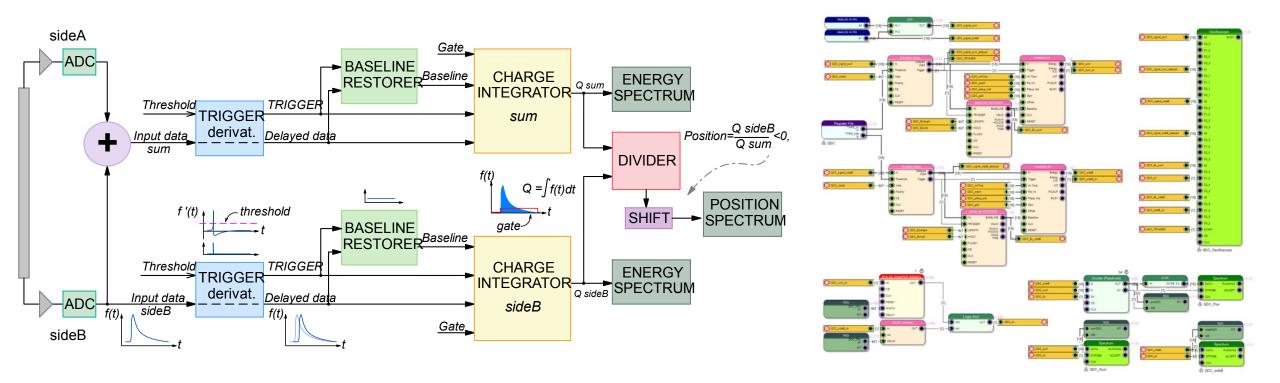
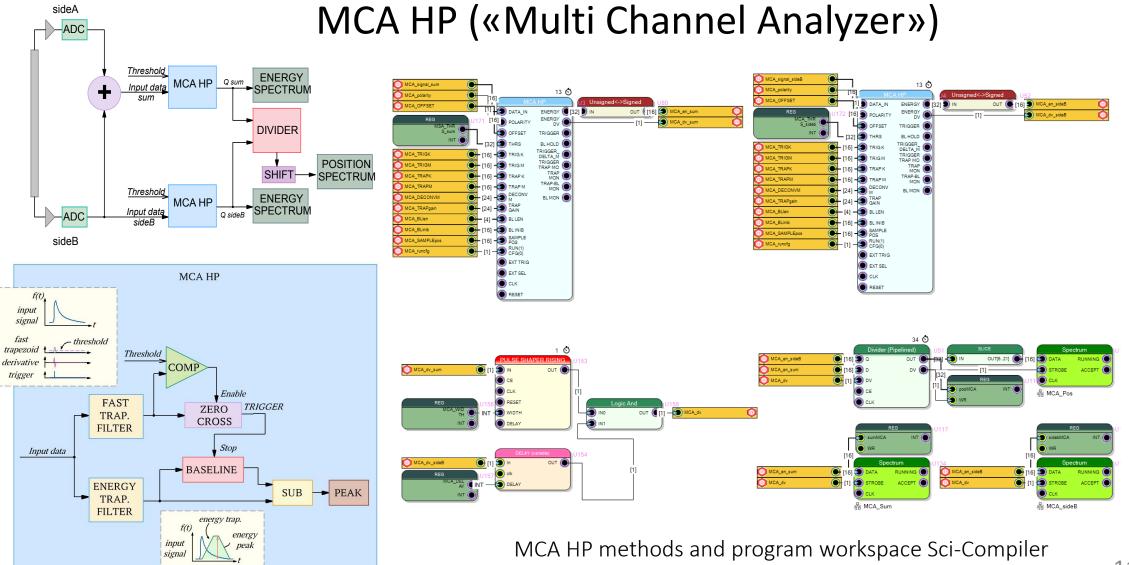


Figure 12. Part of a test setup with source, moderator and detector

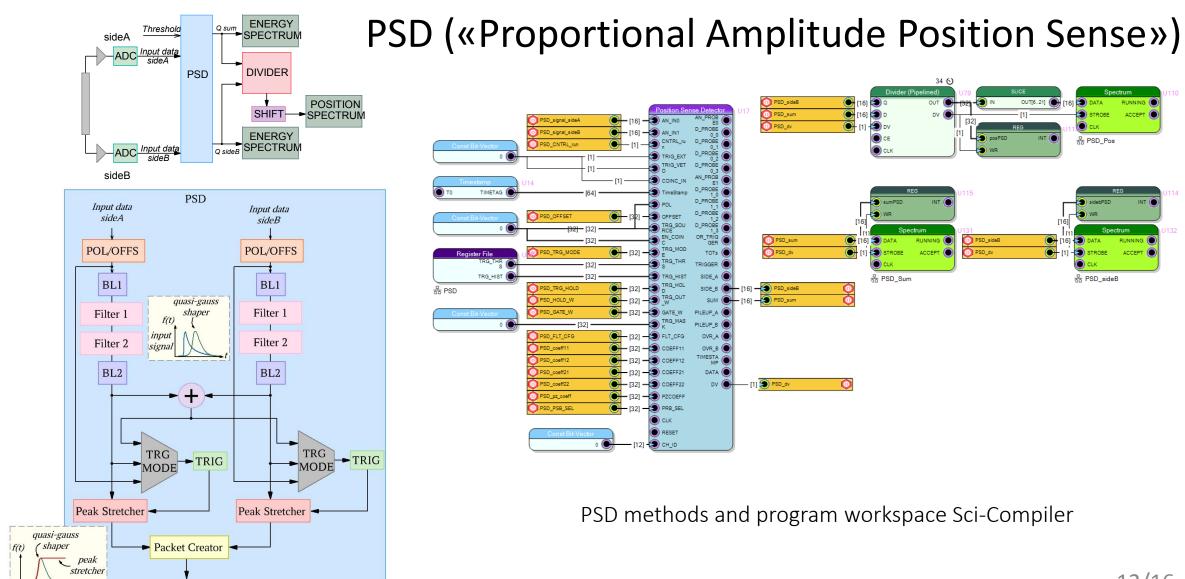
Program for measurement and testing digital processing system

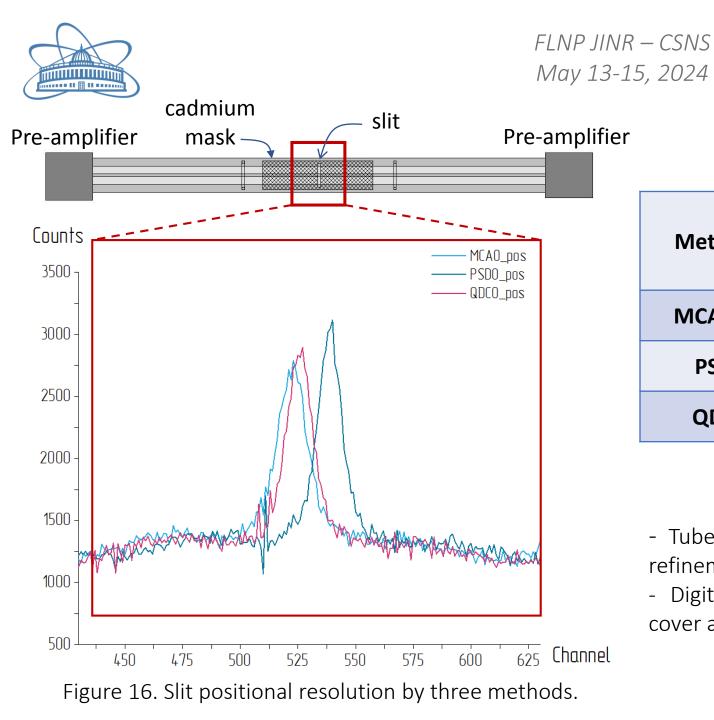


9/16


QDC («Charge-to-Digital Converter»)

QDC methods and program workspace Sci-Compiler


11/16



Packet Data

FLNP JINR – CSNS May 13-15, 2024

FLnP

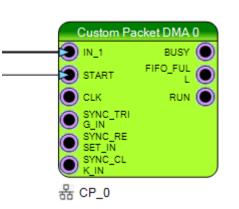
Table 1. Measurement results of the test system.

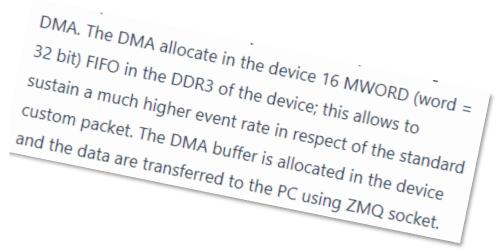
Method	Dead time methods, us	FWHM slit, channel	Position resolution, %
MCA HP	4,8	15,7	1,8
PSD	2	12,7	1,45
QDC	2	13,8	1,56

Short summary:

- Tube measurements require more extensive analysis and refinement.

- Digitizer and FPGA programming software Sci-Compiler cover almost all needs for setting up an experiment.




Next steps.

- Implementation of list mode data transfer between hardware memory and PC using DMA (direct memory access) technology.
- Tests and measurements using specially developed software interfaces (see next slide).
- Optimization of all set of project parameters

To speedup the data transfer in list mode, we use Custom Packet DMA SciCompiler IP.

Since all data transfer processes occur at the software level, Resource Explorer is no longer enough for us to set the parameters of this data transfer. We need our own software for this purpose.

FLNP	JINR –	CSNS
Мау	13-15,	2024

		r 🥆 / F 🛱) {Å	Run# 269	÷			project pa
Plot Type S TOF ~ C	tatistics Type ChTrg Rate 🗸			Apply				parameters
Connect RunCtrl Ad	cqMode HwPara	am HwComponents SwSpectr	ums Statistics	Log				
sel_SR	1	MCA_SET.TRAPgain	152000	PSD_SET.PRB_SEL	3	QDC_SET.BLlengh	8	Diden
PWM_SR.period	2500000	MCA_SET.BLIen	500	PSD_SET.coeff11	14961	QDC_SET.BLhold	400	File FWupgrade GUI Mode
PWM_SR.width	24000000	MCA_SET.BLinib	100	PSD_SET.coeff12	31311	QDC_SET.INTIME	200	
WINDOW.delay	500000	MCA_SET.SAMPLEpos	200	PSD_SET.coeff21	15137	QDC_SET.PRE	0	
WINDOW.gate	23000000	MCA_SET.runcfg	1	PSD_SET.coeff22	31477	QDC_SET.PILEUP	400	
Int_Time	125000000	MCA_SET.dv_sum_GATE	10	PSD_SET.pz_coeff	262	QDC_SET.GAIN	22	
Int_Time_FIFOfull	125000000	MCA_SET.dv_sum_DELAY	0	PSD_SET.output_baseline	1	QDC_0.THRS_sum	450	
Permit_MCA	1	MCA_SET.dv_sideB_DELAY	10	PSD_SET.second_filter	1	QDC_0.THRS_sideB	80	
Permit_PSD	1	MCA_0.THRS_sum	10	PSD_SET.first_filter	1	QDC_1.THRS_sum	450	Plot Type Statistics
Permit_QDC	1	MCA_0.THRS_sideB	10	PSD_SET.pole_zero	1	QDC_1.THRS_sideB	80	TOF ~ ChTrg Rat
MCA_selector	1	MCA_1.THRS_sum	10	PSD_SET.input_baseline	1	QDC_2.THRS_sum	450	
PSD_selector	1	MCA_1.THRS_sideB	10	PSD_SET.attenuation_2	7	QDC_2.THRS_sideB	80	Connect RunCtrl AcqMode
QDC_selector	1	MCA_2.THRS_sum	10	PSD_SET.attenuation_1	7			
MCA_SET.polarity	1	MCA_2.THRS_sideB	10	PSD_0.TRG_THRS	1000			ListMode
MCA_SET.OFFSET	0	PSD_SET.CNTRL_run	1	PSD_0.TRG_HIST	500			
MCA_SET.TRIGK	25	PSD_SET.OFFSET	0	PSD_1.TRG_THRS	1000			custom_package_use
MCA_SET.TRIGM	25 Время н	арастания (risetime) й трапеции	3	PSD_1.TRG_HIST	500			custom_package_acq_len
MCA_SET.TRAPK	150	PSD_SET.TRG_HOLD	0	PSD_2.TRG_THRS	1000	_		
MCA_SET.TRAPM	220	PSD_SET.TRG_OUT_W	1	PSD_2.TRG_HIST	500	_		custom_package_acq_mode
MCA_SET.DECONVM	31872	PSD_SET.GATE_W	150	QDC_SET.INIBIT	400	_		custom_package_timeout
					,			custom_package_thread
								custom_package_high_perform
								custom_package_threaded_buff
								custom_package_check_align_v
								custom_package_data_processi
Status 🗿 Ready to s				Run 🔍				custom_package_dma_buffer_s

DIDEN - software tool for DAQ and configuring all project parameters, including data transfer parameters between hardware memory and PC.

🔅 Diden									
File FWupgrade GUI Mode Help									
DIDEN QMP2tubes_gen_CP Version: 26-03-2024									
- ► ● • • • • • • • • • • • • • • • • • •									
Plot Type Statistics Type TOF V ChTrg Rate V]			Apply					
Connect RunCtrl AcqMode HwPa	aram HwComponent	s SwSpectrums Statistic	s Log						
ListMode	<u>H</u>	lardwareSpectrums		_					
		spectrum_use							
custom_package_use		spectrum_rebin	0	-					
custom_package_acq_len	200000	spectrum_min	0	-					
custom_package_acq_mode	blocking ~	spectrum_max	65535						
custom_package_timeout	2000	spectrum_limitmode	freerun	~					
custom_package_thread	false ~	spectrum_limit	0						
custom_package_high_performance	false ~	1							
custom_package_threaded_buffer_size	150000	_							
custom_package_check_align_word	true ~	oscilloscope_use							
custom_package_data_processing	raw ~	1							
custom_package_dma_buffer_size	200000	mcratemeter_use							

Figure 17. DIDEN – FLNP software for OpenFPGA-based projects (DAQ and flexible configuration). 15/16

Conclusion:

In my statement, I showed the main stages of the project development for signal processing of a helium-3-filled position-sensitive detector.

The methods of signal processing from such detectors are considered, the known feature of which is high and unstable rise time of signals, so for each series of detectors it is necessary to select the optimal method of signal processing from this detector.

FLNP JINR – CSNS Workshop on the neutron scattering technology and multi-disciplinary research International Conference Centre, Dubna

Thank you for your patience!

Speaker: electronics engineer Department of spectrometer complex IBR-2 FLNP JINR *Anastasiya Kazliakouskaya nasta94@jinr.ru*

> FLNP JINR – CSNS May 13-15, 2024