# Optimization of gas mixtures for the Micromegas-based central tracker of the SPD experiment

Koviazina N.

#### Spin Physics Detector (SPD)



The SPD facility is designed as a universal  $4\pi$ -detector including tracking, calorimeter, particle identification, muon systems.

The Micromegas Central Tracker (MCT) will be used at the first phase of experiment and will be replaced later by the Silicon Vertex Detector.





Micromegas (Micro Mesh Gaseous Structure) is a flat counter with ionization and amplification gaps separated by a fine mesh.

- Ionization gap: 3-5 mm
- Amplification gap: ~120 micron
- Gas gain: ~10<sup>4</sup>
- Mesh transparency for primary electrons:
- ~ 100% at optimum drift field
- Anode is segmented as a narrow strips
- Coordinate reconstruction:  $x_c = \frac{\sum x_i q_i}{\sum q_i}$
- Resolution is ~100 micron

# Micromegas in SPD



- In a magnetic field, electrons drift at an angle to the direction of the electric field strength.
- In terms of detector response, the track is "effectively inclined".

#### Detector and gas mixture requirements

| Trigger less data acquisition<br>system => high threshold is<br>required | Stable operation with a sufficiently<br>high gain, and high primary<br>ionization, minimum Lorentz angle |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Coordinate accuracy 150 µm                                               | Lorentz angle below 14 <sup>0</sup>                                                                      |
| Maximum drift time less than<br>100 ns                                   | Electron drift velocity not less than 3 cm/µs                                                            |

#### Gas mixture parameters (simulation)



Optimization of gas mixtures for the Micromegas-based central tracker of the SPD experiment

## Test chamber for gas study



#### MM prototype with DLC resistive layer

- 10x10 cm<sup>2</sup> active area
- 120 um amplification gap, 3 mm drift gap
- All strips connected to single charge amplifier

### Gas gain and charge collection efficiency



• When the voltage reaches 3 kV/cm, we lose almost 40% of the charges



Optimization of gas mixtures for the Micromegas-based central tracker of the SPD experiment

### Detector performance

- Full simulation (B=1 T) was carried out for 4 mixtures:  $\text{Ar-iC}_4\text{H}_{10}(10\%)$ ,  $\text{Ar-CO}_2(7\%)$ iC<sub>4</sub>H<sub>10</sub>(2%),  $\text{Ar-CO}_2(70\%)$ ,  $\text{Ar-CO}_2(7\%)$ .
- Gas gain was normalized to real data with a coefficient of 0.5



## Conclusion

- A realistic description of the detector in the GARFIELD package was created and a simulation of the detector response was carried out taking into account the experimental data.
- We have selected 2 candidates that provide stable operation in the SPD environment
  - 1. Ar-CO<sub>2</sub>(30-70) is a new gas mixture. According to the simulation results, it provides the best performance in the magnetic field.
  - 2. Ar-iC<sub>4</sub>H<sub>10</sub>(90-10) is a well-tested backup solution used by the CLAS12 experiment