Prospects of D^0 TSSA Measurements With DSSD

Amaresh Datta (amaresh@jinr.ru)

DLNP Dubna, Russia

Apr 23, 2024

Amaresh Datta (amaresh@jinr.ru) (JINR) Prospects of D⁰ TSSA Measurements With E

Apr 23, 2024 1 / 13

Possible Inner Tracker Configurations

Figure 2: MAPS : TDR (above) and 'wishlist' (below) configurations

Studies So Far

- Studied expected secondary vertex resolution of all four possible SVD configurations
- Expected D⁰ and D⁺ TSSA statistical uncertainties with MAPS based SVD (ideal PID and realistic PID)
- Studied difference between TDR configuration and 'wishlist' configuration of MAPS SVD
- Looked at the case with no SVD at all
- Detailed analysis note available at : https://indico.jinr.ru/event/4594/ (it will be updated as I perform more simulations) - SPD now stores analysis notes on Indico
- It is probably more likely we might end up with DSSD as SVD (or in the worse case scenario, keep the same MicroMegas in stage II)
- We'll look into what we can expect with DSSD TDR configurations

Simulation Details

- Pythia8 + SpdRoot
- Signal : Open-charm process : $D^0 \rightarrow \pi^+ K^-$ forced
- Background : Minimum Bias : elastic not included
- Event vertex Z : Gaussian profile with $\sigma_z = 30$ cm
- KFParticle to reconstruct secondary vertex (*D*⁰) from daughter particle candidate pairs
- 5 million signal (open-charm) events and 50 million background (min-bias) events were generated for this study

Reconstructed D^0 Properties : 1

Figure 3: Decay length (left) and decay length divided by its uncertainty (notice how tight this cut is - retains a small fraction of sig but reduces bkg significantly)

Apr 23, 2024 5 / 13

Before Cuts

Figure 4: Reconstructed from simulations

Figure 5: Projected for 1 year of data

э Apr 23, 2024 6/13

3

After Cuts

Figure 6: Projected for 1 year

Figure 7: Projected for 1 year : signal from fit (Gaussian + linear)

< ⊒ >

Statistical Uncertainties : DSSD and MAPS

Figure 8: DSSD SVD

Figure 9: MAPS SVD

A D N A B N A B N A B N

Similar performances : DSSD 15 - 20 % worse

Amaresh Datta (amaresh@jinr.ru) (JINR) Prospects of D^0 TSSA Measurements With E

Apr 23, 2024 8 / 13

Comparison of DSSD to MAPS

Statistical uncertainties : MAPS and DSSD

- x_F (0.2 0.3) : 0.00676, 0.00808
- x_F (0.3 0.5) : 0.00938, 0.01173
- x_F (0.5 1.0) : 0.05325, 0.06031

Cut efficiencies : MAPS and DSSD

- signal : 0.00825, 0.00368 (we retain less than a per cent)
- background : 5.92x10⁻⁶, 7.02x10⁻⁷

MAPS in fact allowed for even tighter cut $(L/\delta L > 4)$ and therefore, better background suppression, but DSSD did not (with limited simulation statistics), comparison used $(L/\delta L > 3.5)$ for both

A Side Note About x_F Range

- We have been quoting $x_F \sim 0.2$ as when A_N is expected to be relevant, but that is an after effect of looking at old pion A_N i.e. left top plot
- Our Samara colleagues tell us for D mesons, appreciable A_N probably starts at just +ve x_F i.e. left bottom plot

Amaresh Datta (amaresh@jinr.ru) (JINR) Prospects of D⁰ TSSA Measurements With E

Apr 23, 2024 10 / 13

Comparison of Different x_F Ranges

Figure 10: x_F range : 0.2 - 1.0Figure 11: x_F range : 0.02 - 1.0Left : x_F range : 0.2 - 1.0 : bins : 0.2-0.3, 0.3-0.5, 0.5-1.0Right : x_F range : 0.02 - 1.0 : bins : 0.02-0.2, 0.2-0.4, 0.4-1.0

Apr 23, 2024 11 / 13

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Summary

- DSSD TDR config performs slightly worse than MAPS TDR config (15 - 20%)
- MAPS based SVD has better resolution, it can allow for even tighter cuts and therefore better background suprpession based on decay length and its uncertainties
- A MAPS based SVD similar to DSSD geometry (shorter barrel and with end-caps) may perform better
- May be we should start binning x_F even less than 0.2 for charmed mesons transverse single spin asymmetries (TSSA)

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Thank You

Amaresh Datta (amaresh@jinr.ru) (JINR) Prospects of D⁰ TSSA Measurements With E

Apr 23, 2024 13 / 13

э

< □ > < □ > < □ > < □ > < □ >