Synthesis and study of the decay properties of isotopes of superheavy elements Ds and Lv

Currently, the study of superheavy nuclei has become one of the most interesting and rapidly developing areas of nuclear physics. The synthesis of new elements 119 and 120 requires acceleration of heavier ions, such as ⁵⁰Ti, ⁵¹V, ⁵⁴Cr. However, the transition from a doubly magic ⁴⁸Ca to such projectiles is accompanied by an additional drop in reaction cross sections. Unfortunately, the theoretical values of the reaction cross sections leading to elements 119 and 120 differ by 2-3 orders of magnitude. However, for planning such experiments, it is extremely important to have more definite estimates of the cross sections.

Cross section of the complete-fusion reaction products

FIG. 1. Cross section of the complete-fusion reaction products. The methods of evaluating various processes that determine the cross section of the formation of the final reaction products are shown.

In theory, the fusion-evaporation reaction cross section is divided into three interrelated processes: the capture of interacting nuclei, the formation of an excited composite nucleus and its survival during neutron evaporation (see Fig. 1). The capture cross section can be measured experimentally or calculated theoretically. To assess the probability of compound-nucleus formation, the synthesis of the same nucleus in reactions with different ions is essential, since the probability of its survival will be almost the same. To study the probability of nuclear survival, which is largely determined by fission barriers and neutron binding energies, it is desirable to study reaction cross sections in a wide range of proton and neutron numbers of nuclei. Of particular importance is the study of reactions that lead to nuclei located at the boundary of their stability (with minimal barriers). The experiments were aimed at studying the listed processes of the complete-fusion reaction.

The ²³²Th + ⁴⁸Ca reaction has been studied at four projectile energies at the new gas-filled separator DGFRS-2 on-line to the cyclotron DC280 at the SHE Factory at FLNR JINR. Some parameters of the experiments performed at three lowest energies are listed in Table I.

TABLE I. The ²³²Th target thickness, laboratory-frame energies of ⁴⁸Ca in the middle of the target layer, resulting excitation energy intervals, total beam doses, the numbers of observed decay chains of ²⁷⁷Ds (3*n*) and ²⁷⁶Ds (4*n*) and the cross sections of their production.

, u	and the cross sections of them production.									
_	Target	$E_{ m lab}$	E^{*}	Beam	No. of	σ_{3n}	σ_{4n}			
	thickness	(MeV)	(MeV)	dose	chains	(pb)	(pb)			
_	(mg/cm^2)			$\times 10^{19}$	3n / 4n	_	_			
	0.89	231.1	32.3-36.6	2.4	0/1	< 0.2	$0.07^{+0.17}$			
							-0.06			

0.76	237.8	37.9-42.1	1.9	0 / 5	<0.5	$0.7^{+1.1}_{-0.5}$
0.65	250.6	48.9-52.3	2.0	0 / 1	_	$0.11^{+0.46}_{-0.09}$

Three new superheavy nuclides ²⁶⁸Sg, ²⁷²Hs, and ²⁷⁶Ds were synthesized for the first time, see

Fig. 2.

FIG.2. Decay properties of ²⁷⁶Ds, ²⁷²Hs, and ²⁶⁸Sg. The upper rows for each chain show the ⁴⁸Ca energy (*E*1 = 231 MeV, *E*2 = 238 MeV, *E*3 = 251 MeV) and the separator magnetic rigidity ($B\rho$ 1 = 2.42 T m, $B\rho$ 2 = 2.45 T m, $B\rho$ 3 = 2.43 T m) (on the top of the blank square with a mark "Ds 276"). On the right side of the square, the ER energy and vertical and horizontal positions on the detector (in mm) are given. The rows on the left side provide the α -particle (in yellow) and SF-fragment (in green) energies and time intervals between the events. The energies of the summed signals are given in parentheses. The events marked with a shadow were registered during the beam-off periods. The α -particle energy errors are shown by smaller italic numbers.

The summary decay properties of new nuclei in the ²⁷⁶Ds decay chain are given in Table II.

TABLE II. The first three columns show nucleus, decay mode and branch, as well as half-life. The n	ext four
columns show α -particle energy E_{α} , α -decay energy Q_{α} , and partial half-lives.	

			<u> </u>			
Nucleus	Decay mode,	Half-life	E_{α} (MeV)	Q_{α} (MeV)	T_{lpha}	$T_{ m SF}$
	branch (%)					
²⁷⁶ Ds	$SE \cdot 57 + 15$	$0.15^{\pm 0.10}$ ms	10.746(28)	10.904(28)	$0.36^{\pm 0.32}$ ms	$0.27^{\pm 0.23}$ ms
	-18	-0.04^{ms}			-0.15 ms	-0.10^{ms}
²⁷² Hs	α	$0.16^{\pm 0.19}$ s	9.628(21)	9.772(21)		
2.50		-0.06				
268 Sg	SF	$13^{\pm 17}$ s				
		-4				

The cross sections for the formation of the heaviest elements (the maximum of the total cross section of the *x*n-channels) are shown in Fig 3. The data were obtained during the synthesis of elements with Z=108 and 112-118 in the fusion reactions of target nuclei from ²²⁶Ra to ²⁴⁹Cf with ⁴⁸Ca. Now they are complemented for the first time with data on the synthesis of the new isotope of element 110 in the ²³²Th + ⁴⁸Ca reaction. The isotope ²⁷⁶Ds is formed with a cross section an order of magnitude lower than that for the lighter nuclide ²⁷⁰Hs (N = 162) in the ²²⁶Ra(⁴⁸Ca, 4*n*)²⁷⁰Hs reaction. On the contrary, when moving to the region of heavier elements (Z > 110), the cross section increases.

Such variation is in full agreement with theoretical models predicting the closed shells at Z=108, N=162 and Z=114, N=184. At the mass limits of the atomic nuclei, the effect of these shells significantly increases the survival of the heaviest compound nuclei and thus determines the

existence of superheavy elements. In this regard, a significant rise in the cross section from Ds to the isotopes of Fl and Mc, observed in fusion reactions with ⁴⁸Ca, is essentially an ascent to the "island of stability" and a step towards the magic numbers at Z=114 and N=184.

FIG. 3. Maximum production cross sections for the isotopes of heavy elements in the ⁴⁸Ca-induced reactions with ²²⁶Ra, ²³²Th, ²³⁸U, ^{242,244}Pu, ²⁴³Am, ^{245,248}Cm, ²⁴⁹Bk, and ²⁴⁹Cf. Data measured at DGFRS and DGFRS-2 are shown by red squares, the results obtained at SHIP, BGS, TASCA, and GARIS are shown by blue circles. The lines are drawn to guide the eye.

During the experiment at 231-MeV ⁴⁸Ca energy lasting less than a month, a sensitivity of about 70 fb was achieved, which indicates a strong potential for the research of superheavy nuclei with low production cross sections.

In the 232 Th + 48 Ca reaction studied at two of the four largest projectile energies, <u>the new</u> nuclide 275 Ds, a product of the 5*n* channel, was synthesized for the first time.

Some parameters of the experiments are listed in Table III.

TABLE III. The ²³²Th and ²³⁸U target thicknesses; reaction-specific laboratory-frame projectile energies E_{lab} in the middle of the target layers; resulting excitation energy E^* intervals; total beam doses; the numbers of observed decay chains of ²⁷⁶Ds (4*n*), ²⁷⁵Ds (5*n*), and ²⁷³Ds (5*n*), and the cross sections σ of their production.

Reaction	Target	E_{lab}^{a}	E^*	Beam	No. of	σ_{4n}	σ_{5n}
	(mg/cm^2)	(Mev)	(Mev)	$\times 10^{19}$	4n/5n	(pb)	(pb)
²³² Th+ ⁴⁸ Ca	0.65	250.6	48.9-52.3	2.0	1/1	$0.11^{+0.46}_{-0.09}$	$0.11^{+0.46}_{-0.09}$
_	-	257.0	54.2-57.5	3.2	0/5	<0.2	$0.34^{+0.59}_{-0.16}$
²³⁸ U+ ⁴⁰ Ar	0.69	212.2	47.5-50.7	3.2	0/2	<0.3	$0.18^{+0.44}_{-0.12}$

The energies of α particles or spontaneous fission fragments and decay times of nuclei in the decay chains of ²⁷⁵Ds are shown in Fig. 4.

FIG. 4. The same as in Fig. 2 but for ²⁷⁵Ds produced in the ²³²Th + ⁴⁸Ca reaction at the projectile energies E1 = 251 MeV and E2 = 257 MeV. The probabilities of random origin of two events P_{ran} are shown; these particles escaped the focal detector, leaving low energy in it, but did not enter the side detector.

The decays of ²⁷⁵Ds led to the previously synthesized daughter nuclei ²⁷¹Hs, ²⁶⁷Sg, and ²⁶³Rf, which means the <u>first observation and identification of the superheavy nucleus</u>, the product of the <u>fusion of ⁴⁸Ca with the actinide nuclide</u>, by the method of genetic correlations with known nuclei.

The measured α -particle energies of the mother nucleus ²⁷⁵Ds are similar, and the decay times do not indicate possible decays with different half-lives. However, some <u>difference in the α -particle energy of ²⁷¹Hs and in the decay mode of the subsequent isotope ²⁶⁷Sg suggests the presence of decays through different excited levels.</u>

We evaluated the properties of isotopes ²⁷¹Hs and ²⁶⁷Sg separately for different decay branches. It turned out that not only do these isotopes decay with different α -particle energies (²⁷¹Hs) or decay modes (²⁶⁷Sg), but their half-lives also differ markedly, see Table IV.

TABLE IV. Summary of decay properties of nuclei synthesized in the ²³²Th+⁴⁸Ca reaction. The first three columns show the nucleus, decay mode, and experimental half-life. The next five columns show α -particle energy E_{α} , α -decay energy Q_{α} , as well as calculated spin and partial half-lives with respect to α decay and SF.

Nucleus	Decay mode	$T_{1/2}^{exp}$	E_{α} (MeV)	Q_{α} (MeV)	Spin	T^{calc}_{a}	T^{calc}_{SF}
²⁷⁵ Ds	α	$0.43^{+0.29}_{-0.12}$ ms	11.20(2)	11.37(2)	3/2	0.22 ms	2.0 s
²⁷¹ Hs	α	$7.1^{+8.4}_{-2.5}$ s	9.05(2)	9.18(2)	3/2	5.1 s	6.0 min
²⁷¹ Hs	α	46^{+56}_{-16} s	9.34(2)	9.48(2)	11/2	63 s	21 h

²⁶⁷ Sg	SF	100^{+92}_{-39} s	_	_	1/2	16 h	140 s
²⁶⁷ Sg	α	$9.8^{+11.3}_{-4.5}$ min	8.27(2)	8.40(2)	9/2	6 min	2.9 h
²⁶³ Rf	SF	$5.1^{+4.6}_{-1.7}$ s	_	_	1/2	0.5 h	6.4 s

In the ²³⁸U(⁴⁰Ar,5*n*) reaction, two decay chains of ²⁷³Ds were observed (see Table III and Fig. 5). The decay properties of the nuclei in one of them are in good agreement with the properties of the nuclei measured in the five decay chains of the parent nucleus ²⁷⁷Cn produced in the cold-fusion reaction ²⁰⁸Pb(⁷⁰Zn,1*n*). In the second chain, the energy of the α particle of ²⁷³Ds turned out to be approximately 0.2 MeV lower than that measured for ²⁷³Ds ($E_{\alpha} \approx 11.10$ MeV), and the decay time (41.7 ms) is two orders of magnitude higher than its average decay time ($T_{1/2} = 0.18^{+0.11}_{-0.05}$ ms), determined from six decays. Based on these results, the working hypothesis of the isotope decay pattern has been proposed (see Table V).

FIG. 5. The same as in Fig. 4 but for 273 Ds observed in the 238 U + 40 Ar reaction at the projectile energy of 212 MeV (see Table III).

Nucleus	Decay mode	$T_{1/2}^{exp}$	E_{α} (MeV)	Q_{α} (MeV)	Spin	T^{calc}_{a}	T^{calc}_{SF}
$^{273}\text{Ds}^a$	α	30^{+140}_{-15} ms	10.93(2)	11.09(2)	11/2	87 ms	110 s
$^{273}\text{Ds}^b$	α	$0.18^{+0.11}_{-0.05}$ ms	11.10(7)	11.27(7)	1/2	0.21 ms	47 s
$^{269}\text{Hs}^a$	α	13^{+10}_{-4} s	9.20(4)	9.34(4)	9/2	15 s	2.2 h
$^{269}\text{Hs}^{b}$	α	$2.8^{+13.6}_{-1.3}$ s	9.08(15)	9.22(15)	1/2	3 s	14 min
265 Sg ^a	α	$8.5^{+2.6}_{-1.6}$ s	8.84(5)	8.97(5)	11/2	11 s	14 h
265 Sg ^b	α	14.4 + 3.7 = 8	8.69(5)	8.82(5)	3/2	12 s	59 min
261 Rf ^a	α	68±3 s	8.28(2)	8.41(2)	11/2	87 s	12 min
$^{261}\mathrm{Rf}^{b}$	SF	$2.6^{+0.7}_{-0.5}$ s	8.51(6)	8.64(6)	3/2	7.4 s	3.7 s

TABLE V. The same as Table IV but for ²⁷³Ds.

The production cross sections of nuclei in the ²³²Th + ⁴⁸Ca and ²³⁸U + ⁴⁰Ar reactions are shown in Fig. 6. As can be seen, the cross sections of the 5*n* reaction channels at $E^* \approx 50$ MeV are similar within the experimental uncertainties.

FIG. 6. Cross sections for the 3*n*- to 5*n*-evaporation channels for the 232 Th + 48 Ca (closed symbols) and 238 U + 40 Ar (open symbols) reactions. The symbols with arrows show the upper cross-section limits. The dashed lines through the data are drawn to guide the eye. The Bass barriers are shown by open arrows for comparison.

The second part of the experiments was related to the study of the compound-nucleus formation. To understand the possibilities of synthesizing new elements 119 and 120, it is of particular importance to determine the most optimal reactions. This issue depends both on the reaction cross-section value and the availability of the necessary target isotopes and accelerated ions. To do this, it is important to measure the cross sections of reactions that lead to lighter elements, but whose cross sections are obviously higher, for example, ²⁴²Pu(⁵⁰Ti,*x*n)^{292-*x*}Lv and ²³⁸U(⁵⁴Cr,*x*n)^{292-*x*}Lv. The cross sections of these reactions can be compared with, e.g., the cross section of the ²⁴⁵Cm(⁴⁸Ca,2-3n)^{290,291}Lv reaction, which could determine the degree of decrease in the production cross section for element 116 during the transition from ⁴⁸Ca to ⁵⁴Cr. This will help to obtain more reliable information about the process of the compound-nucleus formation (the second stage of the fusion-evaporation process, see Fig. 1). Note, <u>so far no cross section of the reaction of complete fusion of actinide nuclei with ions heavier than ⁴⁸Ca has been measured.</u>

Some parameters of the 238 U(54 Cr,xn) ${}^{292-x}$ Lv experiment and two observed decay chains of <u>new</u> synthesized isotope 288 Lv are shown in Fig. 7.

FIG. 7. Experimental parameters and properties of nuclei in the decay chains of a new isotope ²⁸⁸Lv. In the second chain, the total α -particle energy was not registered (data are under analysis).

From a comparison of the production cross sections for isotopes of element 116 in reactions with ⁴⁸Ca and ⁵⁴Cr, it follows that the transition to a heavier particle led to a drop in the cross section by more than factor of 100, see Fig. 8.

FIG. 8. The same as Fig. 3 but with cross section of the ${}^{238}U({}^{54}Cr,4n){}^{288}Lv$ reaction and tentative estimates for elements 119 and 120 which are shown by black circles.

If we assume that the drop in the cross sections for elements 119 and 120 in reactions with ⁴⁸Ca will remain the same as it is observed in transition from elements 114, 115 to element 118 and the transition from ⁴⁸Ca to ⁵⁴Cr will lead to an additional and similar drop in cross sections, then the expected cross section of the ²⁴³Am+⁵⁴Cr \rightarrow ²⁹⁷119* reaction will be about 1 fb and will be even lower for the element 120. In this case, to obtain one atom of element 119, the duration of the experiment should be about 3 years.

However, it should be noted that such a formal extrapolation is not entirely justified, since cross sections of reactions ${}^{245,248}\text{Cm}{+}^{48}\text{Ca}{\rightarrow}^{293,296}\text{Lv}{*}$ (N=177, 180) and ${}^{238}\text{U}{+}^{54}\text{Cr}{\rightarrow}^{292}\text{Lv}{*}$ (N=176), which lead to different compound nuclei, are compared. But the survival probability for ${}^{293,296}\text{Lv}{*}$, according to calculations, should be higher (see Fig. 1). If so, then the cross-section drop factor due to the change in the capture cross-section and the formation probability of a compound nucleus during the transition to a heavier ion ${}^{54}\text{Cr}$ and resulting in ${}^{292}\text{Lv}{*}$ should be less.

Based on the above, important areas of research are:

1. When discovering new elements, special attention is paid to their identification. One of the main methods is the registration of α decays of new nuclei, followed by α decays of known nuclei. Alpha decays of ^{293,294}119, products of the ²⁴³Am(⁵⁴Cr,3-4*n*) reaction, lead to unknown isotopes ^{289,290}Ts. The properties of the daughter nuclei in the ²⁹⁰Ts decay chain (²⁸⁶Mc – ²⁶⁶Db) were previously determined by us but the properties of nuclei in the decay chain of ²⁹³119 are not known. The most optimal way to solve this problem is the synthesis of ^{281,282}Nh nuclei in the ²³⁷Np(⁴⁸Ca,3-4n) reaction. It is possible not only to obtain more ²⁸²Nh nuclei, but also for the first time to synthesize and study the properties of new nuclei ²⁸¹Nh, ²⁷⁷Rg, ²⁷³Mt, ²⁶⁹Bh, ²⁶⁵Db.

2. The cross sections of reactions leading to the isotopes of elements 119 and 120 may differ by a factor of 8 (when the same projectile is used, see Fig. 8). According to calculations, these cross sections may differ by 10 times, using different projectiles ⁵⁰Ti and ⁵⁴Cr to synthesize one element (Fig. 1). Experimental estimates of the probability of the compound-nucleus formation in reactions with ⁵⁰Ti and ⁵⁴Cr suggest a decrease in the cross section during the transition from ⁵⁰Ti to ⁵⁴Cr by about 4 times. To measure this factor, an experiment in which the ²⁹²Lv* compound nucleus will be produced in the ²⁴²Pu+⁵⁰Ti reaction, which was observed in the ²³⁸U+⁵⁴Cr \rightarrow ²⁹²Lv* reaction, is of great importance.