Results of the first experiments at the ACCULINNA-2 separator and the scientific programme for 2024

Vratislav Chudoba for ACCULINNA-2 collaboration

FLNR JINR, Dubna

Results on previous experiments

- Experimental session in 2018 2020
- Beams ⁸He, ⁹Li, and ⁶He
- ⁵⁻⁷H, ^{7,9}He, and ⁸⁻¹⁰Li isotopes investigated

Characteristics of obtained RIBs

lon	E, AMeV	Reaction	l, pps/pμA	P , %	∆ p, ±%
⁶ He	29	¹¹ B(33.5 AMeV)+Be(1 mm)	2.2*10 ⁶	90.2	2.0
⁸ He	28	"	5.5*10 ⁴	95.4	3.25
⁹ Li	31	"	5.0*10 ⁵	97.6	2.0
¹⁰ Be	45	¹⁵N (49.3 AMeV)+Be(1 mm)	2.3*10 ⁶	78.4	1.25
²⁶ P	28	³² S (52.7 AMeV)+Be (0.5 mm)	15	<0.5	0.75
²⁷ S	27	"	60	1	0.75

ACCULINNA-2

Results since 2018

- elastic scattering ⁶He+d
 - PhD. thesis of B. Zalewski, NIM B
- low energy spectra and decay modes, ⁸He+d \rightarrow ^{3,4}He+^{7,6}H
 - PRL, PRC, Bulletin of RAS
- reference reactions (d,⁴He) and (d,³He) with ¹⁰Be
 - NIM B, Phys.Atomic Nucl.
- low energy spectra, ⁶He(d,p)⁷He, p-⁶He-n coincidences
 - IJMP E, PRC
- low energy spectra, ⁹Li(d,p)¹⁰Li, p-⁹Li-n coincidences
 - Bulletin of RAS

Prospects

Experiments for 2024 year

- production of ³H, ^{6,8}He, and other beams in wide energy range 10-44 MeV/A
 - methodical experiments on ²H(⁶He,⁶Li)2n and ¹H(³H,n)³He
- transfer of 2n/4n clusters
 - ⁴He(⁸He,⁴He)⁸He
 - ⁴He(⁸He,⁶He)⁶He
 - ⁴He(⁶He,⁴He)⁶He

2n transfer – available data

G.M. Ter-Akopian et al., Phys. Lett. B 426 (1998) 251.

⁴He(⁶He,⁶He)⁴He experiment at 25-35 AMeV

Experiment in 2002

- E(⁶He) ~ 25 AMeV
- I ~ 10⁵ pps
- Target ~ 5.6×10²⁰ cm⁻²
- detection efficiency: 1

Factor: 10 (beam)
 × 1 (target) × 10
 (detectors)
 ≈ 100

4n transfer – available data

Obtained in

Yu. Ts. Oganessian et al., Phys. Rev. C. 60 (1999) 044605.

R. Wolski et al., Nucl. Phys. A 701 (2002) 29.

- ⁴He(⁸He,⁸He)⁴He at FLNR
 - E(⁸He) ~ 26 AMeV
 - $I \sim 4 \times 10^3 \text{ pps}$
 - Target ~ 2.4×10²¹ cm⁻²

4n transfer

⁸He: I ~ 10⁵ s⁻¹, E ~ 25, 30, 35 AMeV

⁴He(⁸He,⁴He)⁸He ⁴He(⁸He,⁶He)⁶He

4n and 2n transfer

Experiment in 2002

- E(⁸He) ~ 26 AMeV
- I ~ 4×10³ pps
- Target ~ 2.4×10²¹ cm⁻²
- detection efficiency: 1

Experiment in 2024

- E(⁸He) ~ 26 AMeV
- I ~ 10⁵ pps
- Target ~ $2.1 \times 10^{21} \text{ cm}^{-2}$
- detection efficiency: 4

• Factor: 25 (beam) × 0.9 (target) × 4 (detectors) **≈ 90**

2n and 4n transfer

• ⁴He(⁸He,⁴He)⁸He, 100 nb/sr assumed

~80 coincidences ⁴He-⁸He per week

- ⁴He(⁸He,⁴He)⁸He, 100 nb/sr assumed
 - ~20 coincidences ⁶He-⁶He per week
- ⁴He(⁶He,⁴He)⁶He, 100 μb/sr assumed

~10⁴ coincidences ⁴He-⁶He per week

First test measurement

- 100 units of BC-404 scintillators
- 75 mm thick, 100 mm diameter
- $E_n = 20 35 \text{ MeV}$
- $\varepsilon_n \sim 0.2$ for single neutron

Conclusions

- Production of ³H, ^{6,8}He, and ^{10,12}Be beams in wide energy range 10-44 MeV/A
 - test of modules for neutron wall
- Transfer of 2n/4n clusters
 - ~80 coincidences of ⁸He-⁴He per week expected
 - ~20 coincidences of ⁶He-⁶He per week expected
 - ~10⁴ coincidences of ⁶He-⁴He per week expected

Characteristics of obtained RIBs

lon	E, AMeV	Reaction	I, pps/pµA	P , %	∆ p, ±%
۴He	29	¹¹ B(33.5 AMeV)+Be(1 mm)	2.2*10 ⁶	90.2	2.0
⁸ He	28	"	5.5*10 ⁴	95.4	3.25
⁹ Li	31	"	5.0*10 ⁵	97.6	2.0
¹⁰ Be	45	¹⁵ N (49.3 AMeV)+Be(1 mm)	2.3*10 ⁶	78.4	1.25
²⁶ P	28	³² S (52.7 AMeV)+Be (0.5 mm)	15	<0.5	0.75
²⁷ S	27	**	60	1	0.75

Real basic RIBS characteristics are in a good agreement with technical specifications and estimations.

Conclusions on recent experiments

A. A. Bezbakh et al., Phys. Rev.I. A. Muzalevskii et al., Phys.Lett. 124 (2020) 022502Rev. C 103 (2021) 044313

- g.s. at 2.2 MeV; resonant states at 5.5 MeV, probably 7.5 MeV, and 11 MeV observed
- 6 H *E. Y. Nikolskii et al.*, Phys. Rev. C 105 (2022) 064605.

⁷H

- Resonant state at 2.7 MeV not observed
- eminent peak at 6.5 MeV observed
- lower possible energy limit for g.s. 4.5 M

A. A. Bezbakh et al., Phys. Rev. Lett. 124 (2020) 022502 *I. A. Muzalevskii et al.*, Phys. Rev. C 103 (2021) 044313 *E. Y. Nikolskii et al.*, Phys. Rev. C 105 (2022) 064605.

- calibrations confirmed by ¹⁰Be(²H,³He)⁹Li and ¹⁰Be(²H,⁴He)⁸Li reaction
- evidence for novel mode of nuclear decay (true 4n decay) obtained for the first time

Backup: 2n transfer – available data

- (1) optical-model with the parameters as for ⁶Li+⁴He
- (2) OM fit with the parameters for ${}^{6}\text{He}+{}^{4}\text{He}$
- (3) OM with the real double-folding potential of the ⁶He+⁴He
- (4) 2n-cluster exchange
- (5) four-body model of the 2n transfer

4n transfer

⁴He(⁸He,⁴He)⁸He, 100 nb/sr assumed

$\theta_{\rm CM}$, deg.	θ_{LAB} , deg.	E, AMeV	θ_{LAB} , deg.	E, AMeV	Counting rate,
$(\Delta \theta_{\rm CM} = 4^0)$	⁸ He slow	⁸ He slow	⁴ He fast	⁴ He fast	events/day
140	27,4	5,35	19,7	39,3	0,1
144	26,2	4,93	17,8	40,2	0,4
148	24,7	4,47	15,9	41,1	0,9
152	22,8	4,08	13,9	41,8	1,4
156	20,5	3,73	11,9	42,5	1,7
160	17,8	3,44	9,9	43,1	2,0
164	14,8	3,20	7,9	43,6	2,3
168	11,5	3,02	5,9	44,0	1,9
172	7,8	2,88	3,9	44,2	0,4

• ~80 coincidences ⁴He-⁸He per week in total

2n transfer

⁴He(⁸He,⁶He)⁶He, 100 nb/sr assumed

$\theta_{\rm CM}, \text{ deg.}$ ($\Delta \theta_{\rm CM} = 4^0$)	θ _{LAB} , deg. ⁶He slow	E, AMeV ⁶ He slow	θ _{LAB} , deg. ⁶He fast	E, AMeV ⁶ He fast	Counting rate, events/day
148	42,5	4,03	13,0	35,8	0,2
152	40,8	3,36	11,3	36,5	0,4
156	38,5	2,80	9,8	37,0	0,8
160	35,2	2,31	8,2	37,5	0,7
164	30,7	1,91	6,5	37,9	0,4
168	24,9	1,59	4,9	38,2	0,1

• ~20 coincidences ⁶He-⁶He per week in total

Study of 4n system at RIKEN

 E_{4n} (MeV)

2n transfer

⁴He-⁶He coincidences: ~ 16÷50 / day (10 μb/sr, 10⁶ pps, 3*10²⁰ Atoms/cm²)

lon	θ_{lab} , deg.	$\theta_{_{cm}}$, deg.	E, AMeV	Counting, per day
⁴ He fast	4 8 12 16	8.1 16.2 24.3 32.4	50.3 49.5 48.3 46.5	51 47 50 51
⁶ He slow	15.4 27.35 34.9 39.2	171.9 163.8 155.7 147.6	1.41 1.93 2.77 3.92	16 37 58 50

⁴He(⁶He,⁶He)⁴He experiment at 25-35 AMeV

50-year-long quest

- predicted in 1972
 - A. I. Baz' et al., "Light and intermediate nuclei near the border of nuclear stability" (Nauka, Moscow, Moscow, **1972**).
- $^{7}\text{Li}(\pi^{-},\pi^{+})$
 - K. Seth, "Pionic probes for exotic nuclei," (1981);
 - V. Evseev et al., Nuclear Physics A 352, 379 (1981);
- ²⁵²Cf ternary fission
 - D. Aleksandrov et al., Yad. Fiz. 36, 1351 (1982);
- d(⁸He,⁷H)
 - M. S. Golovkov et al., Phys. Lett. B 588, 163 (2004);
- ¹¹B(π⁻,p ³He)
 - Y. Gurov et al., The EPJ A 32, 261 (2007);
 - Y. Gurov et al., PPN 40, 558 (2009);

Appendix: Full setup

Appendix: Identification of ³He

Appendix: Identification of ³He

a20_1_un:a1_1 {flag1}

I. Muzalevski et al., Bull.Rus.Acad.Sci.: Phys., 84, 500 (2020)

Appendix: Energy levels

Appendix: Background measurement

Appendix: Background measurement

- Empty target events are located mainly outside the energy ranges of interest
- Only hypothetical 11 MeV state can be contaminated
- Reaction cm angle cutoff qcm < 18 dgr is expected to provide ⁷H spectrum free from empty target background

Appendix: Experimental resolution

- complete MC simulations to check the detection setup
- higher energy
 resolution than in
 the previous
 experiments (less
 than 1 MeV) is
 obtained

Appendix: Resolution

Energy and angular resolutions

E_T	$2.2 {\rm ~MeV}$		$5.5 { m MeV}$		$11 { m MeV}$		$14 { m MeV}$	
10°	0.95	2.2	0.73	2.3	0.48	2.5	0.38	2.8
20°	1.10	1.6	0.93	1.8	0.64	2.2	0.52	2.6
30°	1.13	1.2	0.99	1.3	0.77	1.8	0.69	2.0

Appendix: CMS angular distributions

Theoretical FRESCO calculations

- Standard calculation diffraction minimum is sitting on top of the maximum in the data.
- To fit the position of diffraction minimum the non-standard calculation conditions should be used:
 - extreme peripheral transfer
 - large absorption

Interpretation

consistent with expected very "fragile" character of ⁷H g.s. and very small g.s. population cross section.