

Nuclotron-based Ion Collider fAcility

First physics for the MPD

V. Riabov for the MPD Collaboration

Heavy-ion collisions

High beam energies ($\sqrt{s_{NN}} > 100 \text{ GeV}$ **)** Low beam energies ($\sqrt{s_{NN}} \sim 10 \text{ GeV}$)

High temperature: Early Universe evolution

High baryon density: Inner structure of compact stars

- \triangleleft At $\mu_B \sim 0$, smooth crossover (lattice QCD calculations + data)
- \triangleleft At large μ_B , 1st order phase transition is expected \rightarrow QCD critical point
- At NICA, both BM@N and MPD study QCD medium at extreme net baryon densities

Fixed-target operation at NICA

- MPD-CLD and MPD-FXT options approved by accelerator department (default option from start-up)
- **↓** Collider mode: two beams, $\sqrt{s_{NN}} = 4-11$ GeV
- \cdot Fixed-target mode: one beam + thin wire (\sim 50-100 µm) close to the edge of the MPD central barrel:
	- \checkmark extends energy range of MPD to $\sqrt{s_{NN}}$ = 2.4-3.5 GeV (overlap with HADES, BM@N and CBM)
	- \checkmark solves problem of low event rate at lower collision energies (only ~ 50 Hz at $\checkmark_{NN} = 4$ GeV at design luminosity)
- \triangleleft Expected beam condition for the first year(s):
	- \checkmark MPD-CLD: Xe+Xe/Bi+Bi at $\sqrt{s_{NN}} \sim 7$ GeV, reduced luminosity \to collision rate ~ 50 Hz
	- \checkmark MPD-FXT: Xe/Bi+W at $\sqrt{s_{NN}} \sim 3 \text{ GeV}$

Capability of target and collision energy overlap between MPD and BM@N experiments

Multi-Purpose Detector (MPD) Collaboration

MPD International Collaboration was established in 2018 to construct, commission and operate the detector

12 Countries, >500 participants, 38 Institutes and JINR

Organization

Acting Spokesperson: Victor Riabov Institutional Board Chair: Alejandro Ayala Project Manager: Slava Golovatyuk

Deputy Spokespersons: Zebo Tang, Arkadiy Taranenko

Joint Institute for Nuclear Research, Dubna; A.Alikhanyan National Lab of Armenia, Yerevan, Armenia; SSI "Joint Institute for Energy and Nuclear Research – Sosny" of the National Academy of Sciences of Belarus, Minsk, Belarus University of Plovdiv, Bulgaria; Tsinghua University, Beijing, China; University of Science and Technology of China, Hefei, China; Huzhou University, Huzhou, China; Institute of Nuclear and Applied Physics, CAS, Shanghai, China; Central China Normal University, China; Shandong University, Shandong, China; University of Chinese Academy of Sciences, Beijing, China; University of South China, China; Three Gorges University, China; Institute of Modern Physics of CAS, Lanzhou, China; Tbilisi State University, Tbilisi, Georgia; Institute of Physics and Technology, Almaty, Kazakhstan; Benemérita Universidad Autónoma de Puebla, Mexico; Centro de Investigación y de Estudios Avanzados, Mexico; Instituto de Ciencias Nucleares, UNAM, Mexico; Universidad Autónoma de Sinaloa, Mexico; Universidad de Colima, Mexico; Universidad de Sonora, Mexico; Universidad Michoacana de San Nicolás de Hidalgo, Mexico Institute of Applied Physics, Chisinev, Moldova; Institute of Physics and Technology, Mongolia;

Belgorod National Research University, Russia; Institute for Nuclear Research of the RAS, Moscow, Russia; High School of Economics University, Moscow, Russia National Research Nuclear University MEPhI , Moscow, Russia; Moscow Institute of Science and Technology, Russia; North Osetian State University, Russia; National Research Center "Kurchatov Institute", Russia; Peter the Great St. Petersburg Polytechnic University Saint Petersburg, Russia; Plekhanov Russian University of Economics, Moscow, Russia; St.Petersburg State University, Russia; Skobeltsyn Institute of Nuclear Physics, Moscow, Russia; Petersburg Nuclear Physics Institute, Gatchina, Russia; Vinča Institute of Nuclear Sciences, Serbia; Pavol Jozef Šafárik University, Košice, Slovakia

MPD strategy

- MPD strategy ̶ high-luminosity scans in **energy** and **system size** to measure a wide variety of signals:
	- \checkmark order of the phase transition and search for the QCD critical point $\hat{\to}$ structure of the QCD phase diagram
	- \checkmark hypernuclei and equation of state at high baryon densities $\hat{\to}$ inner structure of compact stars, star mergers
- Scans to be carried out using the **same apparatus** with all the advantages of collider experiments: \checkmark maximum phase space, minimally biased acceptance, free of target parasitic effects
	- \checkmark correlated systematic effects for different systems and energies $\hat{\to}$ simplified extraction of physical signals

Status and initial physics performance studies of the MPD experiment at NICA MPD Collaboration @ Eur.Phys.J.A 58 (2022) 7, 140 (~ 50 pages)

MPD physics program

Physics feasibility studies

- Physics feasibility studies using centralized large-scale MC productions (~ 100M events)
- \triangle Centralized Analysis Framework for access and analysis of data \rightarrow Analysis Train:
	- \checkmark consistent approaches and results across collaboration, easy storage and sharing of codes
	- \checkmark reduced number of input/output operations for disks and databases, easier data storage on tapes

- \cdot First Analysis Train runs started in September, 2023 \rightarrow regular runs on request ever since
- \triangleleft Many new services and improvements
- \triangle Train become a new standard for physics (feasibility) studies

Preparing for real data analysis, develop realistic analysis methods and techniques

Collective flow

Anisotropic flow at RHIC/LHC

 $\bullet\bullet$ Initial eccentricity and its fluctuations drive momentum anisotropy v_n with specific viscous modulation

initial geometry \rightarrow **flow harmonics** $\rightarrow \frac{\eta}{s}$ $\frac{\eta}{s}(T,\mu), \frac{\zeta}{s}(T,\mu), c_s(T), \alpha_s(T),$ etc.

See talk: Arkadiy Taranenko, System size scan at NICA energies

MPD performance for v_1 **,** v_2 **of V0 particles**

BiBi@9.2 GeV (PHSD, 15M), full event reconstruction

Differential flow can be defined using the following fit:

$$
v_n^{SB}(m_{inv}) = v_n^S \frac{N^S(m_{inv})}{N^{SB}(m_{inv})} + v_n^B(m_{inv}) \frac{N^B(m_{inv})}{N^{SB}(m_{inv})}
$$

- v_n^S signal anisotropic flow (set as a parameter in the fit)
- $v_n^B(m_{inv})$ background flow (set as polynomial function)
- \triangleleft Performance of v_1 and v_2 of \triangle hyperons:

- \triangleleft Good performance for v_1 , v_2 using invariant mass fit and event plane methods
- Similar measurements for Ks, other hyperons and short-lived resonances

MPD performance for v_1 , v_2 of π /K/p

BiBi@9.2 GeV (UrQMD, 50M), full event reconstruction

 \bullet Reconstructed and generated v_I and $v₂$ for identified hadrons are in good agreement for all methods

MPD has capabilities to measure different flow harmonics for a wide variety of identified hadrons

System size scan for flow measurements is vital for understanding of the medium transport properties and onset of the phase transition

Global polarization of particles

Non-central heavy-ion collisions

Focus is to see the effect of large angular momentum and magnetic field in heavy-ion collisions

Hyperon global polarization

Global polarization of hyperons experimentally observed, decreases with $\sqrt{s_{NN}}$

- reproduced by AMPT, 3FD, UrQMD+vHLLE
- hint for a Λ - $\overline{\Lambda}$ difference, magnetic field:

$$
P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T} + \frac{\mu_{\Lambda} B}{T} \qquad P_{\bar{\Lambda}} \simeq \frac{1}{2} \frac{\omega}{T} - \frac{\mu_{\Lambda} B}{T}
$$

NICA: extra points in the energy range 2-11 GeV centrality, \mathbf{p}_T and rapidity dependence of polarization, not only for Λ , but other (anti)hyperons (Λ, Σ, Ξ)

MPD performance: BiBi@9.2 GeV (PHSD, 15 M events) \rightarrow full reconstruction $\rightarrow \Lambda$ global polarization

Performance study of the hyperon global polarization measurements with MPD at NICA, Eur.Phys.J.A 60 (2024) 4, 85

MPD: first global polarization measurements for $\Lambda/\overline{\Lambda}$ **will be possible with ~ 10M data sampled events**

V. Riabov @ 2nd China-Russia Joint Workshop on NICA Facility, September 2024

Polarization of vector mesons: K* (892) and

- \triangleleft Light quarks can be polarized by $|\bar{J}|$ and $|\bar{B}|$
- **❖** If vector mesons are produced via recombination their spin may align
- Quantization axis:
	- \checkmark normal to the production plane (momentum of the vector meson and the beam axis)
	- normal to the event plane (impact parameter and beam axis)

$$
\checkmark \quad \rho_{00} \, (\text{PP}) \text{-} \frac{1}{3} = [\rho_{00} \, (\text{EP}) \text{-} \frac{1}{3}] \, [\frac{1+3v_2}{4}]
$$

Measured as anisotropies:

$$
\frac{dN}{dcos\theta} = N_0 \big[1 - \rho_{0,0} + cos^2\theta \big(3\rho_{0,0} - 1 \big) \big]
$$

 $\rho_{0,0}$ is a probability for vector meson to be in spin state = 0 $\rightarrow \rho_{0.0} = 1/3$ corresponds to no spin alignment

 Measurements at RHIC/LHC challenge theoretical understanding $\rightarrow \rho_{00}$ can depend on multiple physics mechanisms (vorticity, magnetic field, hadronization scenarios, lifetimes and masses of the particles)

MPD: extend measurements in the NICA energy range, $\sqrt{s_{NN}}$ **< 11 GeV**

Hadronic resonances

Hadronic phase

• Short-lived resonances are sensitive to rescattering and regeneration in the hadronic phase

* Properties of the hadronic phase are studied by measuring ratios of resonance yields to yields of longlived particles with same/similar quark contents: ρ/π , K^{*}/K, ϕ/K , Λ^*/Λ , $\Sigma^{*}\Sigma$ and Ξ^{*0}/Ξ

- Measurements in a wide energy range $\sqrt{s_{NN}}$ = 7-5000 GeV support the existence of a hadronic phase that lives long enough (up to $\tau \sim 10$ fm/ c) to cause a significant reduction of the reconstructed yields of short-lived resonances
- All model predictions for early stages must be filtered through the hadronic phase

Precise measurements at NICA are needed to validate description of the hadronic phase in models

MPD performance for hadronic resonances

- BiBi@9.2 GeV (UrQMD, 50 M events), full event reconstruction
- Most realistic approach to data analysis, centrality dependence

- Reconstructed spectra match truly generated ones within uncertainties
- Measurements are possible starting from \sim zero momentum \rightarrow sample most of the yields

First centrality dependent studies with 50 M sampled A+A events

Strangeness production

Strange baryons

- Since the mid 80s, strangeness enhancement is considered as a signature of the QGP formation
- Experimentally observed in heavy-ion collisions at AGS, SPS, RHIC, and LHC energies.

• No consensus on the dominant strangeness enhancement mechanisms:

- \checkmark strangeness enhancement in QGP contradicts with the observed collision energy dependence
- \checkmark strangeness suppression in pp within canonical suppression models reproduces most of results except for $\phi(1020)$
- System size scan (pp, p-A, A+A) + differential measurements (vs. p_T , multiplicity, event shape, energy balance) of (multi)strange baryons and mesons is a key to understanding of strangeness production

System size scan in the NICA energy range is important

MPD performance for hyperons

BiBi@9.2 GeV (UrQMD, 50M events), full event reconstruction

- different background estimates (fit function vs mixed-event), testing alternative Machine Learning techniques - different PID selections for high- p_T daughter particles

MPD has capabilities to measure production of strange kaons, (multi)strange baryons and resonances in pp, p-A and A-A collisions using h-ID in the TPC&TOF and different decay topology selections

Electromagnetic radiation

Direct photons and system temperature

- Direct photons are all photons except for those coming from hadron decays:
	- \checkmark produced during all stages of the collision
	- \checkmark QGP is transparent for photons \to penetrating probe
- Low-E photons \rightarrow effective temperature of the system:

$$
E_{\gamma} \frac{{\rm d}^3 N_{\gamma}}{{\rm d}^3 p_{\gamma}} \propto e^{-E_{\gamma}/T_{\rm eff}}
$$

Relativistic A+A collisions \rightarrow the highest temperature created in laboratory ~ 10¹² K

Predictions for NICA

- Experimental measurements in $A+A$ collisions are available from the LHC (2.76-5 TeV), RHIC (62-200 GeV) and WA98 (17.2 GeV)
- No measurements at NICA energies (direct photon yields and flow vs. p_T and centrality)

Non-zero direct photon yields are predicted, $R\gamma \sim 1.05 - 1.15 \rightarrow e$ experimentally reachable!!!

Prospects for the MPD

 \triangleleft Photons can be measured in the ECAL or in the tracking system as e^+e^- conversion pairs (PCM)

- * ECAL high time-of-flight resolution is important for bckg. suppression at low-E (~ 100 ps) !!!
- Main sources of systematic uncertainties for direct photons:
	- \checkmark detector material budget \to conversion probability; p_T-shapes and reconstruction efficiencies of π^0 and η
	- \checkmark with R $\gamma \sim 1.1$ and $\delta R \gamma / R \gamma \sim 3\%$ \Rightarrow uncertainty of T_{eff} $\sim 10\%$

MPD can potentially provide measurements for direct photon production in the NICA energy range

Dielectron continuum and LVMs

- The QCD matter produced in A-A interactions is transparent for leptons, once produced they leave the interaction region largely unaffected + not sensitive to collective expansion
- Dielectron continuum carries a wealth of information about reaction dynamics and medium properties

 $\sqrt{s_{NN}}$ (GeV)

10

LMR as chronometer

Integrated thermal excess radiation tracks the total fireball lifetime within $\sim 10\% \rightarrow$ non-monotonous lifetime variations trace critical phenomena

100

IMR as thermometer

 $dR_{ll}/dM \propto (MT)^{3/2} \exp(-M/T_s),$ T_s smoothly evolves T = 160 MeV to 260 MeV

e-ID with MPD

 \div eID with TPC + TOF

eID with ECAL: steps in at higher energies where TPC/TOF become less effective

E/p for electron tracks

- ECAL e-ID for 2σ -matched tracks:
	- \checkmark TOF < 2 ns ($\delta \sim 500 \text{ ps}$)
	- \checkmark E/p ~ 1
- Turns on at $p_T > 200$ MeV/c

MPD performance for (di)electrons

 \triangleleft Electron reconstruction efficiency and purity, AuAu@11 (UrMQD v.3.4) events

- MPD provides reconstruction of electrons with high purity
- \bullet S/B for dielectron measurements was achieved at 1/20 in the mass region 0.2-1.4 GeV/c²

Summary

MPD Collaboration meeting in JINR (Dubna): April 23-25

- Heavy-ion collisions provide the means to study QCD phase diagram at extreme temperatures and (net)baryon densities. NICA energy range \rightarrow moderate temperatures and maximum (net)baryon densities
- * Preparation of the MPD detector and experimental program is ongoing, develop realistic analysis methods and techniques \rightarrow MPD commissioning with beams in 2025
- MPD@NICA provides capabilities for important/unique contributions
- Many vacant (not so well covered) topics: fluctuations of conserved charges, HBT, dielectrons, etc.
- $\cdot \cdot \cdot$ Next Collaboration meeting: 14-16 October → welcome !!!

BACKUP

NICA accelerator complex

Stages of the accelerator complex commissioning:

- \checkmark HILAC + transfer line to Booster $\hat{\to}$ commissioned in 2018 with He¹⁺, Fe¹⁴⁺, C⁴⁺, Ar¹⁴⁺ and Xe²⁸⁺
- \checkmark HILAC + Booster $\hat{\to}$ first run in November-December, 2020 with He¹⁺
- \checkmark HILAC + Booster + transfer line to Nuclotron $\hat{\to}$ second run in October, 2021 with He¹⁺ and Fe¹⁶⁺
- \checkmark HILAC + Booster + Nuclotron + transfer line to BM@N \Rightarrow third run in Jan. Apr., 2022 with C⁶⁺
- \checkmark HILAC + Booster + Nuclotron + transfer line to BM@N -> fourth run in September, 2022 February, 2023 with Ar and Xe beams \rightarrow 500+ M events at BM@N

NICA collider

Nuclotron-NICA transfer line NICA collider

dipoles and quadrupoles have been installed in the tunnel

- \bullet Magnet and RF installation nearly finalized
- * Fast extraction system from the Nuclotron and Nuclotron-to-Collider transfer line – autumn of 2024
- \div First technological and cryogenic run of collider end of 2024 - beginning of 2025
- \div First run with beams second half of 2025

MPD @ NICA

 \cdot One of two experiments at NICA collider to study heavy-ion collisions at $\sqrt{s_{NN}}$ = 4−11 GeV

TPC: $|\Delta \varphi| < 2\pi$, $|\eta| \le 1.6$; **TOF, EMC**: $|\Delta \varphi| < 2\pi$, $|\eta| \le 1.4$; **FFD**: $|\Delta \varphi| < 2\pi$, 2.9 < $|\eta| < 3.3$; **FHCAL**: $|\Delta \varphi| < 2\pi$, 2 < $|\eta| < 5$

Au+Au @ 11 GeV (UrQMD + full chain reconstruction)

CLD: trigger simulation, BiBi@9.2 GeV

- \cdot Trigger system consists of FFD (2.7 < |n| < 4.1), FHCAL (2 < |n| < 5) and TOF (|n| < 1.5)
- MPD trigger system challenges at NICA energies:
	- low multiplicity of particles produced in heavy-ion collisions
	- \checkmark particles are not ultra-relativistic (even the spectator protons)
	- \checkmark wide z-vertex distribution, $\sigma \sim 20$ cm ($\sigma \sim 50$ cm at start-up)
- DCM-QGSM-SMM, BiBi@9.2: trigger efficiency is 87-98% for different trigger configuration
	- FFD trigger definition:
- FHCAL trigger definition:
- at least one fired module per side
- meaningful times, $0 \leq \text{time}_{EW} \leq 50 \text{ ns}$
- reconstructed |z-vertex| < 140 cm
- at least one fired module per side meaningful times, $0 \leq \text{time}_{EW} \leq 50 \text{ ns}$
- reconstructed |z-vertex| < 150 cm
- TOF trigger definition:
- at least one fired MRPC

- Trigger system of the MPD based on FFD, FHCAL and TOF detectors provides high efficiency in HIC
- Simulation of the MPD trigger system is included in the Analysis Train
- Light collision systems: \sim 50% for C+C, vanishingly small for d+d

Need different solutions for triggering for light systems

FXT: trigger simulation, XeW@2.9 GeV

- \cdot Trigger system consists of FFD (2.7 < |n| < 4.1), FHCAL (2 < |n| < 5) and TOF (|n| < 1.5)
- MPD trigger system challenges at NICA energies:
	- no coincidence signals for East and West trigger detectors
	- particles are not ultra-relativistic (even the spectator protons)
- DCM-QGSM-SMM, XeW@2.9: trigger efficiency is 73-97% for different trigger configuration
	- FFD trigger definition:
-
- \checkmark at least one fired module (East)
- meaningful times, $0 \leq \text{time } E \leq 50$ ns
- FHCAL trigger definition:
- at least one fired module (East)
- meaningful times, $0 \leq \text{time } E \leq 50$ ns
- TOF trigger definition:
- at least one fired MRPC

- Trigger system of the MPD based on FFD, FHCAL and TOF detectors remains efficient in FXT
- $\cdot \cdot$ Need to better understand background (beam-gas, beam-pipe, etc.) and noise situation

Efficiency for π **/K/p/Ks/** Λ **,** z_{vertex} **= - 85 cm**

Basic track selections: $N_{\text{hits}} > 10$; DCA < 2 cm; primary particles ($R_{\text{production}} < 1$ cm)

Reasonable coverage at mid-rapidity for light and heavy identified hadrons

MPD-FXT, *v***¹ &** *v***² for protons/pions**

- \bullet BiBi @ 2.5, 3.0 and 3.5 GeV (UrQMD mean-field, fixed-target mode)
- Realistic PID (TPC+TOF); efficiency corrections; centrality by TPC multiplicity

❖ Reconstructed v_1 & v_2 are quantitatively consistent with truly generated signals **MPD and BM@N complete each other with modest overlap**

MPD performance for hypenuclei

Mass production 29 (PHQMD, BiBi@9.2 GeV, 40M events)

2- and 3-prong decay modes were studied separately to estimate systematics

 $N(\tau) = N(0) \exp\left(-\frac{\tau}{\tau_0}\right) = N(0) \exp\left(-\frac{ML}{c\eta\tau_0}\right),$

 10^5

 $10⁴$

 Λ H \rightarrow d+p+ π ⁻

reconstructed

 0.6

0.8

- generated

 0.4

 0.2

 χ^2 /ndf = 3.909/3

 $p1 = 0.2577 \pm 0.0046$

 $p0 = 2.948e+05 \pm 1.154e+04$

 1.2

1.4

$_{\Lambda}$ H³ reconstruction with \sim 50M samples events $_{\Lambda}$ H⁴, $_{\Lambda}$ He⁴ reconstruction with ~ 150M samples events

Direct photons puzzle(s)

- \bullet Simultaneous description of direct photon yields and elliptic flow (v_2) is problematic:
	- direct photon flow is similar to flow of decay photons, underestimated by hydro \rightarrow favors late emission
	- large yields of low-E direct photon yields require early emission in to be described by hydro models

Controversial results reported for different systems by different experiments

V. Riabov @ 2nd China-Russia Joint Workshop on NICA Facility, September 2024

RHIC BES program

◆ Data taking by STAR at RHIC: $3 < \sqrt{s_{NN}} < 200$ GeV (750 < μ _B < 25 MeV)

- \triangle A very impressive and successful program with many collected datasets, already available and expected results
- Limitations:
	- \checkmark Au+Au collisions only
	- \checkmark Among the fixed-target runs, only the 3 GeV data have full midrapidity coverage for protons ($|y| < 0.5$), which is crucial for physics observables

V. Riabov @ 2nd China-Russia Joint Workshop on NICA Facility, y_{cm} (and the set of the

Polarization of Ξ **and** Ω

	Mass (GeV/c ²)	$c\tau$ (cm)	decay mode	decay parameter	magnetic moment (μ_N)	spin
Λ (uds)	1.115683	7.89	Λ -> πp (63.9%)	0.732 ± 0.014	-0.613	1/2
Ξ ⁻ (dss)	1.32171	4.91	E -> $\Lambda \pi$ (99.887%)	-0.401 ± 0.010	-0.6507	1/2
Ω (sss)	1.67245	2.46	$Q \rightarrow \Lambda K$ (67.8%)	0.0157 ± 0.002	-2.02	3/2

Phys. Rev. Lett. 126, 162301 (2021)

- Λ , Ξ and Ω have different spins and magnetic moments, different number of s-quarks, less feedback for heavier hyperons
- Direct measurements are difficult due to small values of α
- Measured based on polarization of daughter Λ
- AMPT is consistent with measurements
- Polarization of Ξ is larger compared with Λ : $\langle P_{\Lambda+\bar{\Lambda}}\rangle(\%) = 0.24 \pm 0.03 \pm 0.03$ $\langle P_{\Xi} \rangle = 0.47 \pm 0.10$ (stat.) ± 0.23 (syst.) %
- Λ results are not feed-back corrected ($\sim 15\%$)
- The AMPT is consistent with measurements
- Polarization of Ξ is larger compared with Λ
- Earlier freeze-out of multi-strange baryons is consistent with larger value of P_H for Ξ
- Large uncertainties for Ω , can expect larger signal, $P = \frac{\langle s \rangle}{\langle s \rangle}$ \boldsymbol{s} $\sim \frac{s+1}{2}$ 3 ω \overline{T} PRC95.054902 (2017)

Feed-down effect

 σ ~60% of measured A are feed-down from $\Sigma^* \rightarrow \Lambda \pi$, $\Sigma^0 \rightarrow \Lambda \gamma$, $\Xi \rightarrow \Lambda \pi$

p Polarization of parent particle R is transferred to its daughter A (Polarization transfer could be negative!)

 C_{AR} : coefficient of spin transfer from parent R to Λ S_R : parent particle's spin

$$
\mathbf{S}_{\Lambda}^* = C\mathbf{S}_{R}^* \qquad \qquad \langle S_y \rangle \propto \frac{S(S+1)}{3} (\omega + \frac{\mu}{S}B)
$$

 f_{AR} : fraction of Λ originating from parent R μ _R : magnetic moment of particle R

$$
\begin{pmatrix}\n\varpi_{\rm c} \\
B_{\rm c}/T\n\end{pmatrix} = \begin{bmatrix}\n\frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^0 R} C_{\Sigma^0 R} \right) S_R(S_R + 1) & \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^0 R} C_{\Sigma^0 R} \right) (S_R + 1) \mu_R \\
\frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^0 R} C_{\Sigma^0 R} \right) S_R(S_R + 1) & \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^0 R} C_{\Sigma^0 R} \right) (S_R + 1) \mu_R\n\end{bmatrix}^{-1} \begin{pmatrix}\nP_{\Lambda}^{\text{meas}} \\
P_{\Lambda}^{\text{meas}}\n\end{pmatrix}
$$

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

Primary ∧ polarization will be diluted by 15%-20% (model-dependent)

This also suggests that the polarization of daughter particles can be used to measure their parent polarization! e.g. Ξ , Ω

T. Niida, NA61/SHINE Open Seminar 2021

Ξ and Ω polarization measurements

$$
\frac{dN}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha_H \mathbf{P}_H^* \cdot \hat{\mathbf{p}}_B^* \right)
$$

Getting difficult due to smaller decay parameter for Ξ and Ω ... $\alpha_{\Lambda} = 0.732, \ \alpha_{\Xi^{-}} = -0.401, \ \alpha_{\Omega^{-}} = 0.0157$

spin 1/2

Polarization of daughter \wedge in a weak decay of Ξ : (based on Lee-Yang formula)

T.D. Lee and C.N. Yang, Phys. Rev. 108. 1645 (1957)

$$
\mathbf{P}_{\Lambda}^{*} = \frac{(\alpha_{\Xi} + \mathbf{P}_{\Xi}^{*} \cdot \hat{p}_{\Lambda}^{*})\hat{p}_{\Lambda}^{*} + \beta_{\Xi}\mathbf{P}_{\Xi}^{*} \times \hat{p}_{\Lambda}^{*} + \gamma_{\Xi}\hat{p}_{\Lambda}^{*} \times (\mathbf{P}_{\Xi}^{*} \times \hat{p}_{\Lambda}^{*})}{1 + \alpha_{\Xi}\mathbf{P}_{\Xi}^{*} \cdot \hat{p}_{\Lambda}^{*}} \qquad \alpha^{2} + \beta^{2} + \gamma^{2} = 1
$$
\n
$$
\mathbf{P}_{\Lambda}^{*} = C_{\Xi^{-}\Lambda}\mathbf{P}_{\Xi}^{*} = \frac{1}{3}(1 + 2\gamma_{\Xi})\mathbf{P}_{\Xi}^{*}.
$$
\n
$$
C_{\Xi^{-}\Lambda} = +0.944
$$

spin 3/2

Similarly, daughter Λ polarization from Ω :

$$
\mathbf{P}_{\Lambda}^* = C_{\Omega - \Lambda} \mathbf{P}_{\Omega}^* = \frac{1}{5} \left(1 + 4 \gamma_{\Omega} \right) \mathbf{P}_{\Omega}^*.
$$

Here y_{Ω} is unknown.

- Time-reversal violation parameter β_{Ω} would be small

 α_{Ω} is very small

then $y_{\Omega} \sim \pm 1$ and the polarization transfer C Ω_{Ω} leads to

$$
C_{\Omega\Lambda} \approx +1
$$
 or -0.6

Parent particle polarization can be studied by measuring daughter particle polarization!

T. Niida, NA61/SHINE Open Seminar 2021

26

Polarization of vector mesons: K* (892) and

Non-central heavy-ion collisions:

 $\rho_{0,0}$ is a probability for vector meson to be in spin state = $0 \rightarrow \rho_{0,0} = 1/3$ corresponds to no spin alignment

- Measurements at RHIC/LHC challenge theoretical understanding $\rightarrow \rho_{00}$ can depend on multiple physics mechanisms (vorticity, magnetic field, hadronization scenarios, lifetimes and masses of the particles …)
- Measurements should be extended to lower collision energies

Critical fluctuations

- \cdot Ratio of the 4th-to2nd moment of the (net)proton multiplicity distribution:
	- \checkmark non-monotonic behavior $\hat{\to}$ deviation from non-critical dynamic baseline close to CEP ???

 Interpretation of results requires understanding of the role of finite-size effects, which have specific dependence on the size and duration of formed system

Significant improvement of statistical precision and systematic uncertainties and extra points in the NICA energy range are required