

Nuclotron-based Ion Collider fAcility



### First physics for the MPD

V. Riabov for the MPD Collaboration



## **Heavy-ion collisions**





#### High beam energies ( $\sqrt{s_{NN}} > 100 \text{ GeV}$ )



High temperature: Early Universe evolution

#### Low beam energies (<sub>√SNN</sub>~ 10 GeV)

High baryon density: Inner structure of compact stars



- At  $\mu_B \sim 0$ , smooth crossover (lattice QCD calculations + data)
- ↔ At large  $\mu_B$ , 1<sup>st</sup> order phase transition is expected → QCD critical point
- ✤ At NICA, both BM@N and MPD study QCD medium at extreme net baryon densities

### **Fixed-target operation at NICA**



- MPD-CLD and MPD-FXT options approved by accelerator department (default option from start-up)
- ♦ Collider mode: two beams,  $\sqrt{s_{NN}} = 4-11 \text{ GeV}$
- Fixed-target mode: one beam + thin wire (~ 50-100  $\mu$ m) close to the edge of the MPD central barrel:
  - ✓ extends energy range of MPD to  $\sqrt{s_{NN}} = 2.4-3.5$  GeV (overlap with HADES, BM@N and CBM)
  - ✓ solves problem of low event rate at lower collision energies (only ~ 50 Hz at  $\sqrt{s_{NN}}$  = 4 GeV at design luminosity)
- Expected beam condition for the first year(s):
  - ✓ MPD-CLD: Xe+Xe/Bi+Bi at  $\sqrt{s_{NN}}$  ~ 7 GeV, reduced luminosity → collision rate ~ 50 Hz
  - ✓ MPD-FXT: Xe/Bi+W at  $\sqrt{s_{NN}}$  ~ 3 GeV

#### Capability of target and collision energy overlap between MPD and BM@N experiments

### **Multi-Purpose Detector (MPD) Collaboration**



**MPD** International Collaboration was established in **2018** to construct, commission and operate the detector

12 Countries, >500 participants, 38 Institutes and JINR

#### **Organization**

Acting Spokesperson: Deputy Spokespersons: Institutional Board Chair: Project Manager: Victor Riabov Zebo Tang, Arkadiy Taranenko Alejandro Ayala Slava Golovatyuk

#### Joint Institute for Nuclear Research, Dubna; A.Alikhanyan National Lab of Armenia, Yerevan, Armenia; SSI "Joint Institute for Energy and Nuclear Research – Sosny" of the National

Academy of Sciences of Belarus, Minsk, Belarus University of Plovdiv, Bulgaria; Tsinghua University, Beijing, China; University of Science and Technology of China, Hefei, China; Huzhou University, Huzhou, China; Institute of Nuclear and Applied Physics, CAS, Shanghai, China; Central China Normal University, China; Shandong University, Shandong, China; University of Chinese Academy of Sciences, Beijing, China; University of South China, China; Three Gorges University, China; Institute of Modern Physics of CAS, Lanzhou, China; Tbilisi State University, Tbilisi, Georgia; Institute of Physics and Technology, Almaty, Kazakhstan; Benemérita Universidad Autónoma de Puebla, Mexico; Centro de Investigación y de Estudios Avanzados, Mexico; Instituto de Ciencias Nucleares, UNAM, Mexico; Universidad Autónoma de Sinaloa. Mexico: Universidad de Colima. Mexico: Universidad de Sonora. Mexico: Universidad Michoacana de San Nicolás de Hidalgo, Mexico Institute of Applied Physics, Chisinev, Moldova; Institute of Physics and Technology, Mongolia;



Belgorod National Research University, **Russia**; Institute for Nuclear Research of the RAS, Moscow, **Russia**; High School of Economics University, Moscow, **Russia**; National Research Nuclear University MEPhI, Moscow, **Russia**; Moscow Institute of Science and Technology, **Russia**; North Osetian State University, **Russia**; National Research Center "Kurchatov Institute", **Russia**; National Research Center "Kurchatov Institute", **Russia**; Peter the Great St. Petersburg Polytechnic University Saint Petersburg, **Russia**; Plekhanov Russian University of Economics, Moscow, **Russia**; St.Petersburg State University, **Russia**; Skobeltsyn Institute of Nuclear Physics, Moscow, **Russia**; Petersburg Nuclear Physics Institute, Gatchina, **Russia**; Pavol Jozef Šafárik University, Košice, **Slovakia** 



# **MPD strategy**

- ✤ MPD strategy high-luminosity scans in <u>energy</u> and <u>system size</u> to measure a wide variety of signals:
  - $\checkmark$  order of the phase transition and search for the QCD critical point  $\rightarrow$  structure of the QCD phase diagram
  - $\checkmark$  hypernuclei and equation of state at high baryon densities  $\rightarrow$  inner structure of compact stars, star mergers
- Scans to be carried out using the <u>same apparatus</u> with all the advantages of collider experiments:

   maximum phase space, minimally biased acceptance, free of target parasitic effects
  - $\checkmark$  correlated systematic effects for different systems and energies  $\rightarrow$  simplified extraction of physical signals

Status and initial physics performance studies of the MPD experiment at NICA MPD Collaboration @ Eur.Phys.J.A 58 (2022) 7, 140 (~ 50 pages)



| (will be inserted by the e                            | editor)                           |                                                        |
|-------------------------------------------------------|-----------------------------------|--------------------------------------------------------|
|                                                       |                                   |                                                        |
|                                                       |                                   |                                                        |
|                                                       |                                   |                                                        |
| 2.110.000.000.000.000                                 |                                   |                                                        |
| Status and ini                                        | tial physics perfo                | rmance studies of the MPD                              |
| experiment at                                         | NICA                              |                                                        |
|                                                       |                                   |                                                        |
| The MPD Collaborati                                   | man                               |                                                        |
| <sup>5</sup> The full list of Collaboratio            | on Members is provided at the end | of the manuscript                                      |
|                                                       |                                   |                                                        |
|                                                       |                                   |                                                        |
|                                                       |                                   |                                                        |
|                                                       |                                   |                                                        |
| Reseived: April 20, 2022/ A                           | respired: date                    |                                                        |
|                                                       |                                   |                                                        |
| Abstract The Nuclotros                                | s-based Ion Collider (Acility)s   | 3.7.1 The litter Tracking System                       |
| NICA] is under construct                              | tion at the Joint Institute for   | 8.7.3 The Cosmic Ray Detector                          |
| Nuclear Research PINIC                                | , with commissioning of the       | 3.8 Intrastructure and support systems                 |
| Rectard (CDT) has been                                | heimed to counts at NICA          | as 1 MPD Hall                                          |
| and its components are                                | correctly in production. They     | structured integration and support                     |
| detector is expected to b                             | e ready for data taking with "    | 3.8.3 Support estema                                   |
| the first beams from NH                               | CA. This document provides "      | 19 Flectronical                                        |
| an overview of the landser                            | ape of the investigation of the   | 3.8.1 Saw Control Systems<br>3.8.2 Data Acquisition    |
| QCD phase diagram in t                                | he region of maximum bary-        | 3 Software development and computing mesurces for      |
| onic density, where NIC.                              | A and MPD will be able to *       | the MPD experiment                                     |
| provide significant and u                             | nique input. It also provides "   | L2 Computing                                           |
| a defauled description of t                           | he MPD set-up, including its      | 4.3 Preparation for data taking                        |
| infrastructures. Sciented a                           | and the support and comparing a   | 1 Controling determination                             |
| ular physics measurement                              | ts at MPD are presented and "     | 1.2 Balk properties: hadron spectra, yields and rallos |
| discussed in the context of                           | fexisting data and theoretical "  | A3 Hyperon reconstruction                              |
| expectations.                                         |                                   | 5.5.7                                                  |
| Kenningh NICA MIT                                     | - OCD =                           | 5.4 Reconstruction of mechanical                       |
| Reywords (record - tor a                              | - spectra and                     | 1.5 Electromagnetic protein                            |
|                                                       |                                   | 5.6 Algorithma Face                                    |
| Contents                                              |                                   | E Conclusional                                         |
|                                                       |                                   | Acronyma                                               |
| 12 Brief survey of the MPD                            | plysics main                      |                                                        |
| 2.1 Hadrochemistry                                    | adda and a second second second   | 1 Introduction                                         |
| 2.2 Anisotropic flow na<br>2.1 Internette inherberote | servermental                      | 1 Inclosed the                                         |
| 2.1 Plactualizad                                      | 8m                                | The Multi-Purpose Detector (MPD) is one of             |
| 2.5 Short-lived monan                                 | Bu                                | two dedicated heavy-ion collision experiments of       |
| 3 MPD apparatual                                      | 10                                | Nuclotron-based Ion Collider (Arility (NICA), one      |
| S.I Magner                                            | 12**                              | the flagship projects, planned to come into operat     |
| 3.2 Time Projection Co                                | samber                            | at the Joint Institute for Nuclear Research (JIN       |
| 5.4 Electromagnetic Ca                                | Accistanted 15 m                  | in 2022. Its main scientific purpose is to search      |
| 3.5 Forward Hadron Ca                                 | Automater 197                     | nover paenomena in the oalyon-fich region of the Q     |
| 13.6 Fast Forward Detec                               | See                               | prime singram oy moand of counting heavy nuclei        |



# **MPD physics program**

| G. Feofilov, P. Parfenov                                                                                                                                                                                                                                                  | V. Kolesnikov, Xia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nglei Zhu                                                                                                                                                                                                                                       | K. Mikhailov, A. Taranenko                                                                                                                                                                                                                                                                              |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Global observables</li> <li>Total event multiplicity</li> <li>Total event energy</li> <li>Centrality determination</li> <li>Total cross-section<br/>measurement</li> <li>Event plane measurement at<br/>all rapidities</li> <li>Spectator measurement</li> </ul> | <ul> <li>Spectra of light hyper</li> <li>Light flavor spectra of light hyper</li> <li>Light flavor spectra of the hyperons and</li> <li>Total particle system</li> <li>Total particle system</li> <li>Kinematic and properties of the hyperons of the hyperons</li></ul> | <b>ght flavor and</b><br><b>nuclei</b><br>bectra<br>hypernuclei<br>yields and yield<br>chemical<br>the event<br>Phase Diag.                                                                                                                     | <ul> <li>Correlations and<br/>Fluctuations</li> <li>Collective flow for hadrons</li> <li>Vorticity, Λ polarization</li> <li>E-by-E fluctuation of<br/>multiplicity, momentum and<br/>conserved quantities</li> <li>Femtoscopy</li> <li>Forward-Backward corr.</li> <li>Jet-like correlations</li> </ul> |  |  |
| D. Peresunko, Chi Yang                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wangmei Zha, A. Zinchenko                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                         |  |  |
| <ul> <li>Electromagnetic pre-</li> <li>Electromagnetic calorimeter</li> <li>Photons in ECAL and central</li> <li>Low mass dilepton spectra in modification of resonances a intermediate mass region</li> </ul>                                                            | r <b>obes</b><br>meas.<br>barrel<br>n-medium<br>and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Heavy flavor</li> <li>Study of open charm production</li> <li>Charmonium with ECAL and central barrel</li> <li>Charmed meson through secondary vertices ITS and HF electrons</li> <li>Explore production at charm threshold</li> </ul> |                                                                                                                                                                                                                                                                                                         |  |  |

# NICA

# **Physics feasibility studies**

- Physics feasibility studies using centralized large-scale MC productions (~ 100M events)
- ♦ Centralized Analysis Framework for access and analysis of data → Analysis Train:
  - $\checkmark$  consistent approaches and results across collaboration, easy storage and sharing of codes
  - $\checkmark$  reduced number of input/output operations for disks and databases, easier data storage on tapes



- ♦ First Analysis Train runs started in September, 2023 → regular runs on request ever since
- Many new services and improvements
- Train become a new standard for physics (feasibility) studies

#### Preparing for real data analysis, develop realistic analysis methods and techniques

#### relativistic fluid

#### **Collective flow**

# **Anisotropic flow at RHIC/LHC**

• Initial eccentricity and its fluctuations drive momentum anisotropy  $v_n$  with specific viscous modulation



Evidence for a dense perfect liquid found at RHIC/LHC (M. Roirdan et al., Scientific American, 2006)



See talk: Arkadiy Taranenko, System size scan at NICA energies

### **MPD performance for** $v_1$ , $v_2$ of V0 particles

#### ✤ BiBi@9.2 GeV (PHSD, 15M), full event reconstruction

Differential flow can be defined using the following fit:

$$v_n^{SB}(m_{inv}) = v_n^S \frac{N^S(m_{inv})}{N^{SB}(m_{inv})} + v_n^B(m_{inv}) \frac{N^B(m_{inv})}{N^{SB}(m_{inv})}$$

- $v_n^s$  signal anisotropic flow (set as a parameter in the fit)
- $v_n^B(m_{inv})$  background flow (set as polynomial function)
- Performance of  $v_1$  and  $v_2$  of  $\Lambda$  hyperons:

~ PHSD, Bi+Bi, √s<sub>NN</sub>=9.2 GeV, 20-50%, p > PHSD, Bi+Bi,  $\sqrt{s_{NN}}$ =9.2 GeV, 20-50%, p 0.35 0.015 0.3 0.01 0.25 0.005 0.2 -0.005 0.15 -0.01 • MC MC 0.1 -0.015 Reco Reco 0.05 -0.02 0.5 -0.5 0.5 1.5 2 0 1 2.5 p\_, GeV/c

- Good performance for  $v_1$ ,  $v_2$  using invariant mass fit and event plane methods
- ✤ Similar measurements for Ks, other hyperons and short-lived resonances



### MPD performance for $v_1$ , $v_2$ of $\pi/K/p$

✤ BiBi@9.2 GeV (UrQMD, 50M), full event reconstruction



 $\clubsuit$  Reconstructed and generated  $v_1$  and  $v_2$  for identified hadrons are in good agreement for all methods

MPD has capabilities to measure different flow harmonics for a wide variety of identified hadrons

System size scan for flow measurements is vital for understanding of the medium transport properties and onset of the phase transition



#### relativistic fluid

### **Global polarization of particles**

## Non-central heavy-ion collisions



#### Focus is to see the effect of large angular momentum and magnetic field in heavy-ion collisions

## Hyperon global polarization

• Global polarization of hyperons experimentally observed, decreases with  $\sqrt{s_{NN}}$ 



- ✓ reproduced by AMPT, 3FD, UrQMD+vHLLE
- ✓ hint for a  $\Lambda$ - $\overline{\Lambda}$  difference, magnetic field:

$$P_{\Lambda} \simeq \frac{1}{2}\frac{\omega}{T} + \frac{\mu_{\Lambda}B}{T} \qquad P_{\bar{\Lambda}} \simeq \frac{1}{2}\frac{\omega}{T} - \frac{\mu_{\Lambda}B}{T}$$

NICA: <u>extra points in the energy range 2-11 GeV</u> centrality,  $p_T$  and rapidity dependence of polarization, not only for  $\Lambda$ , but other (anti)hyperons ( $\Lambda$ ,  $\Sigma$ ,  $\Xi$ )

♦ MPD performance: BiBi@9.2 GeV (PHSD, 15 M events)  $\rightarrow$  full reconstruction  $\rightarrow \Lambda$  global polarization

Performance study of the hyperon global polarization measurements with MPD at NICA, Eur.Phys.J.A 60 (2024) 4, 85



#### MPD: first global polarization measurements for $\Lambda/\overline{\Lambda}$ will be possible with ~ 10M data sampled events

V. Riabov @ 2nd China-Russia Joint Workshop on NICA Facility, September 2024

### Polarization of vector mesons: $K^{\ast}(892)$ and $\phi$



- ↔ Light quarks can be polarized by  $|\bar{J}|$  and  $|\bar{B}|$
- If vector mesons are produced via recombination their spin may align
- Quantization axis:
  - normal to the production plane (momentum of the vector meson and the beam axis)
  - normal to the event plane (impact parameter and beam axis)

$$\rho_{00}(\text{PP}) - \frac{1}{3} = [\rho_{00}(\text{EP}) - \frac{1}{3}] [\frac{1+3\nu_2}{4}]$$

✤ Measured as anisotropies:

$$\frac{dN}{d\cos\theta} = N_0 \left[ 1 - \rho_{0,0} + \cos^2\theta \left( 3\rho_{0,0} - 1 \right) \right]$$

 $\rho_{0,0}$  is a probability for vector meson to be in spin state = 0  $\rightarrow \rho_{0,0} = 1/3$  corresponds to no spin alignment

★ Measurements at RHIC/LHC challenge theoretical understanding →  $\rho_{00}$  can depend on multiple physics mechanisms (vorticity, magnetic field, hadronization scenarios, lifetimes and masses of the particles)

#### MPD: extend measurements in the NICA energy range, $\sqrt{s_{NN}} < 11 \text{ GeV}$

#### relativistic fluid

#### Hadronic resonances

### Hadronic phase

✤ Short-lived resonances are sensitive to rescattering and regeneration in the hadronic phase

|                    | ρ(770)                     | K*(892)                  | Σ(1385)                        | Λ(1520)             | Ξ(1530)                    | <b>(1020)</b>       |
|--------------------|----------------------------|--------------------------|--------------------------------|---------------------|----------------------------|---------------------|
| <b>cτ (fm/c)</b>   | 1.3                        | 4.2                      | 5.5                            | 12.7                | 21.7                       | 46.2                |
| $\sigma_{rescatt}$ | $\sigma_{\pi}\sigma_{\pi}$ | $\sigma_{\pi}\sigma_{K}$ | $\sigma_{\pi}\sigma_{\Lambda}$ | $\sigma_K \sigma_p$ | $\sigma_{\pi}\sigma_{\Xi}$ | $\sigma_K \sigma_K$ |

\* Properties of the hadronic phase are studied by measuring ratios of resonance yields to yields of longlived particles with same/similar quark contents:  $\rho/\pi$ , K\*/K,  $\phi/K$ ,  $\Lambda$ \*/ $\Lambda$ ,  $\Sigma$ \*±/ $\Sigma$  and  $\Xi$ \*0/ $\Xi$ 



- ★ Measurements in a wide energy range  $\sqrt{s_{NN}}$  = 7-5000 GeV support the existence of a <u>hadronic phase</u> that lives long enough (up to  $\tau \sim 10 \text{ fm/}c$ ) to cause a significant reduction of the reconstructed yields of short-lived resonances
- ✤ All model predictions for early stages must be filtered through the hadronic phase

Precise measurements at NICA are needed to validate description of the hadronic phase in models

## **NICA** MPD performance for hadronic resonances

- ✤ BiBi@9.2 GeV (UrQMD, 50 M events), full event reconstruction
- ✤ Most realistic approach to data analysis, centrality dependence



- ✤ Reconstructed spectra match truly generated ones within uncertainties
- ↔ Measurements are possible starting from ~ zero momentum  $\rightarrow$  sample most of the yields

#### First centrality dependent studies with 50 M sampled A+A events

#### relativistic fluid

### **Strangeness production**



### **Strange baryons**

- Since the mid 80s, strangeness enhancement is considered as a signature of the QGP formation
- Experimentally observed in heavy-ion collisions at AGS, SPS, RHIC, and LHC energies.



✤ No consensus on the dominant strangeness enhancement mechanisms:

- $\checkmark$  strangeness enhancement in QGP contradicts with the observed collision energy dependence
- strangeness suppression in pp within canonical suppression models reproduces most of results except for  $\phi(1020)$
- System size scan (pp, p-A, A+A) + differential measurements (vs. p<sub>T</sub>, multiplicity, event shape, energy balance) of (multi)strange baryons and mesons is a key to understanding of strangeness production

#### System size scan in the NICA energy range is important



### **MPD** performance for hyperons

#### ✤ BiBi@9.2 GeV (UrQMD, 50M events), full event reconstruction



different background estimates (fit function vs mixed-event), testing alternative Machine Learning techniques
 different PID selections for high-p<sub>T</sub> daughter particles



MPD has capabilities to measure production of strange kaons, (multi)strange baryons and resonances in pp, p-A and A-A collisions using h-ID in the TPC&TOF and different decay topology selections



#### relativistic fluid

### **Electromagnetic radiation**

# **Direct photons and system temperature**

- Direct photons are all photons except for those coming from hadron decays:
  - $\checkmark$  produced during all stages of the collision
  - $\checkmark$  QGP is transparent for photons  $\rightarrow$  penetrating probe
- Low-E photons  $\rightarrow$  effective temperature of the system:

$$E_\gamma rac{{\mathsf d}^3 N_\gamma}{{\mathsf d}^3 p_\gamma} \propto e^{-E_\gamma/\, T_{
m eff}}$$



• Relativistic A+A collisions  $\rightarrow$  the highest temperature created in laboratory ~  $10^{12}$  K



V. Riabov @ 2nd China-Russia Joint Workshop on NICA Facility, September 2024

## **Predictions for NICA**

- Experimental measurements in A+A collisions are available from the LHC (2.76-5 TeV), RHIC (62-200 GeV) and WA98 (17.2 GeV)
- No measurements at NICA energies (direct photon yields and flow vs. p<sub>T</sub> and centrality)

Estimation of the direct photon yields @NICA



• Non-zero direct photon yields are predicted,  $R\gamma \sim 1.05 - 1.15 \rightarrow$  experimentally reachable!!!

## **Prospects for the MPD**

◆ Photons can be measured in the ECAL or in the tracking system as e<sup>+</sup>e<sup>-</sup> conversion pairs (PCM)



- ECAL <u>high time-of-flight resolution</u> is important for bckg. suppression at low-E (~ 100 ps) !!!
- ✤ Main sources of systematic uncertainties for direct photons:
  - ✓ detector material budget → conversion probability;  $p_T$ -shapes and reconstruction efficiencies of  $\pi^0$  and  $\eta$
  - ✓ with Rγ ~ 1.1 and  $\delta R\gamma/R\gamma$  ~ 3% → uncertainty of T<sub>eff</sub> ~ 10%



MPD can potentially provide measurements for direct photon production in the NICA energy range

# **Dielectron continuum and LVMs**

- The QCD matter produced in A-A interactions is transparent for leptons, once produced they leave the interaction region largely unaffected + not sensitive to collective expansion
- Dielectron continuum carries a wealth of information about reaction dynamics and medium properties



#### LMR as chronometer



Integrated thermal excess radiation tracks the total fireball lifetime within ~ 10% → non-monotonous lifetime variations trace critical phenomena

#### **IMR** as thermometer



 $dR_{ll}/dM \propto (MT)^{3/2} \exp(-M/T_s),$ T<sub>s</sub> smoothly evolves T = 160 MeV to 260 MeV

V. Riabov @ 2nd China-Russia Joint Workshop on NICA Facility, September 2024

### e-ID with MPD

#### $\clubsuit$ eID with TPC + TOF



✤ eID with ECAL: steps in at higher energies where TPC/TOF become less effective

**E/p for electron tracks** 



- ECAL e-ID for  $2\sigma$ -matched tracks:
  - ✓ **TOF** < 2 ns ( $\delta$  ~ 500 ps)
  - ✓ E/p ~ 1
- Turns on at  $p_T > 200 \text{ MeV/c}$

### **MPD** performance for (di)electrons

Electron reconstruction efficiency and purity, AuAu@11 (UrMQD v.3.4) events



✤ MPD provides reconstruction of electrons with high purity

\*

\* S/B for dielectron measurements was achieved at 1/20 in the mass region 0.2-1.4 GeV/c<sup>2</sup>



# Summary

#### MPD Collaboration meeting in JINR (Dubna): April 23-25



- ↔ Heavy-ion collisions provide the means to study QCD phase diagram at extreme temperatures and (net)baryon densities. NICA energy range → moderate temperatures and maximum (net)baryon densities
- ◆ Preparation of the MPD detector and experimental program is ongoing, develop realistic analysis methods and techniques → MPD commissioning with beams in 2025
- MPD@NICA provides capabilities for important/unique contributions
- ✤ Many vacant (not so well covered) topics: fluctuations of conserved charges, HBT, dielectrons, etc.
- ◆ Next Collaboration meeting: 14-16 October → welcome !!!

# BACKUP



### NICA accelerator complex



Stages of the accelerator complex commissioning:

- ✓ HILAC + transfer line to Booster → commissioned in 2018 with He<sup>1+</sup>, Fe<sup>14+</sup>, C<sup>4+</sup>, Ar<sup>14+</sup> and Xe<sup>28+</sup>
- ✓ HILAC + Booster → first run in November-December, 2020 with He<sup>1+</sup>
- ✓ HILAC + Booster + transfer line to Nuclotron → second run in October, 2021 with He<sup>1+</sup> and Fe<sup>16+</sup>
- ✓ HILAC + Booster + Nuclotron + transfer line to BM@N → third run in Jan. Apr., 2022 with C<sup>6+</sup>
- ✓ HILAC + Booster + Nuclotron + transfer line to BM@N -> fourth run in September, 2022 February, 2023 with Ar and Xe beams → 500+ M events at BM@N



## **NICA collider**

#### Nuclotron-NICA transfer line





dipoles and quadrupoles have been installed in the tunnel









- ✤ Magnet and RF installation nearly finalized
- Fast extraction system from the Nuclotron and Nuclotron-to-Collider transfer line – autumn of 2024
- First technological and cryogenic run of collider end of 2024
  beginning of 2025
- ✤ First run with beams second half of 2025



## MPD @ NICA

♦ One of two experiments at NICA collider to study heavy-ion collisions at  $\sqrt{s_{NN}} = 4-11$  GeV



**TPC**:  $|\Delta \phi| < 2\pi$ ,  $|\eta| \le 1.6$ ; **TOF**, **EMC**:  $|\Delta \phi| < 2\pi$ ,  $|\eta| \le 1.4$ ; **FFD**:  $|\Delta \phi| < 2\pi$ ,  $2.9 < |\eta| < 3.3$ ; **FHCAL**:  $|\Delta \phi| < 2\pi$ ,  $2 < |\eta| < 5$ 



#### Au+Au @ 11 GeV (UrQMD + full chain reconstruction)

# **NICA** CLD: trigger simulation, BiBi@9.2 GeV

- Trigger system consists of FFD (2.7 <  $|\eta|$  < 4.1), FHCAL (2 <  $|\eta|$  < 5) and TOF ( $|\eta|$  < 1.5)
- MPD trigger system challenges at NICA energies:
  - $\checkmark$  low multiplicity of particles produced in heavy-ion collisions
  - ✓ particles are not ultra-relativistic (even the spectator protons)
  - ✓ wide z-vertex distribution,  $\sigma \sim 20$  cm ( $\sigma \sim 50$  cm at start-up)
- ✤ DCM-QGSM-SMM, BiBi@9.2: trigger efficiency is 87-98% for different trigger configuration
  - FFD trigger definition:

• FHCAL trigger definition:

- TOF trigger definition:
  - ✓ at least one fired MRPC

- $\checkmark$  at least one fired module per side
- ✓ meaningful times,  $0 < \text{time}_{E,W} < 50 \text{ ns}$
- ✓ reconstructed |z-vertex| < 140 cm



✓ reconstructed |z-vertex| < 150 cm



- Trigger system of the MPD based on FFD, FHCAL and TOF detectors provides high efficiency in HIC
- Simulation of the MPD trigger system is included in the Analysis Train
- ✤ Light collision systems: ~ 50% for C+C, vanishingly small for d+d

#### Need different solutions for triggering for light systems

## **NICA FXT: trigger simulation, XeW@2.9 GeV**

- ★ Trigger system consists of FFD (2.7 <  $|\eta|$  < 4.1), FHCAL (2 <  $|\eta|$  < 5) and TOF ( $|\eta|$  < 1.5)
- MPD trigger system challenges at NICA energies:
  - ✓ no coincidence signals for East and West trigger detectors
  - ✓ particles are not ultra-relativistic (even the spectator protons)
- ✤ DCM-QGSM-SMM, XeW@2.9: trigger efficiency is 73-97% for different trigger configuration
  - FFD trigger definition:
  - $\checkmark$  at least one fired module (East)
  - ✓ meaningful times, 0 < time  $_{\rm E}$  < 50 ns
- FHCAL trigger definition:
- ✓ at least one fired module (East)
- $\checkmark$  meaningful times, 0 < time <sub>E</sub> < 50 ns

- TOF trigger definition:
- ✓ at least one fired MRPC



- Trigger system of the MPD based on FFD, FHCAL and TOF detectors remains efficient in FXT
- ✤ Need to better understand background (beam-gas, beam-pipe, etc.) and noise situation

### Efficiency for $\pi/K/p/Ks/\Lambda$ , $z_{vertex} = -85$ cm

Basic track selections:  $N_{hits} > 10$ ; DCA < 2 cm; primary particles ( $R_{production} < 1$  cm)



#### Reasonable coverage at mid-rapidity for light and heavy identified hadrons

# ICA MPD-FXT, $v_1 \& v_2$ for protons/pions

- ♦ BiBi @ 2.5, 3.0 and 3.5 GeV (UrQMD mean-field, fixed-target mode)
- Realistic PID (TPC+TOF); efficiency corrections; centrality by TPC multiplicity



• Reconstructed  $v_1 \& v_2$  are quantitatively consistent with truly generated signals

#### MPD and BM@N complete each other with modest overlap



### **MPD** performance for hypenuclei

#### Mass production 29 (PHQMD, BiBi@9.2 GeV, 40M events)

2- and 3-prong decay modes were studied separately to estimate systematics

 $N(\tau) = N(0) \exp\left(-\frac{\tau}{\tau_0}\right) = N(0) \exp\left(-\frac{ML}{c_0\tau_0}\right),$ 

 $10^{5}$ 

 $10^{4}$ 

 $^{3}_{\Lambda}H\rightarrow d+p+\pi^{-}$ 

reconstructed

0.6

0.8

generated

0.4

0.2



 $\chi^2$ /ndf = 3.909/3

 $p0 = 2.948e + 05 \pm 1.154e + 04$ 

1.2

1.4

Proper time, ns

 $p1 = 0.2577 \pm 0.0046$ 



| Decay channel       | Branching ratio | Decay channel         | Branching ratio |
|---------------------|-----------------|-----------------------|-----------------|
| $\pi^{-+3}He$       | 24.7%           | $\pi^- + p + p + n$   | 1.5%            |
| $\pi^{0} + {}^{3}H$ | 12.4%           | $\pi^{0} + n + n + p$ | 0.8%            |
| $\pi^- + p + d$     | 36.7%           | d + n                 | 0.2%            |
| $\pi^{0} + n + d$   | 18.4%           | p + n + n             | 1.5%            |



## $_{\Lambda}$ H<sup>3</sup> reconstruction with ~ 50M samples events $_{\Lambda}$ H<sup>4</sup>, $_{\Lambda}$ He<sup>4</sup> reconstruction with ~ 150M samples events

## **Direct photons puzzle(s)**

- Simultaneous description of direct photon yields and elliptic flow  $(v_2)$  is problematic:
  - ✓ direct photon flow is similar to flow of decay photons, underestimated by hydro  $\rightarrow$  favors late emission
  - / large yields of low-E direct photon yields require early emission in to be described by hydro models



Controversial results reported for different systems by different experiments



V. Riabov @ 2nd China-Russia Joint Workshop on NICA Facility, September 2024



# **RHIC BES program**

#### ♦ Data taking by STAR at RHIC: $3 < \sqrt{s_{NN}} < 200 \text{ GeV} (750 < \mu_B < 25 \text{ MeV})$

| Au+Au Collisions at RHIC |                                        |         |         |                   |            |    |                                  |         |         |                   |                |
|--------------------------|----------------------------------------|---------|---------|-------------------|------------|----|----------------------------------|---------|---------|-------------------|----------------|
| Collider Runs            |                                        |         |         | Fixed-Target Runs |            |    |                                  |         | 117.    |                   |                |
|                          | √ <mark>S<sub>NN</sub></mark><br>(GeV) | #Events | $\mu_B$ | Ybeam             | run        |    | √ <b>S<sub>NN</sub></b><br>(GeV) | #Events | $\mu_B$ | Y <sub>beam</sub> | run            |
| 1                        | 200                                    | 380 M   | 25 MeV  | 5.3               | Run-10, 19 | 81 | 13.7 (100)                       | 50 M    | 280 MeV | -2.69             | Run-21         |
| 2                        | 62.4                                   | 46 M    | 75 MeV  | 9.<br>18          | Run-10     | 2  | 11.5 (70)                        | 50 M    | 320 MeV | -2.51             | Run-21         |
| 3                        | 54.4                                   | 1200 M  | 85 MeV  | 10                | Run-17     | 3  | 9.2 (44.5)                       | 50 M    | 370 MeV | -2.28             | Run-21         |
| 4                        | 39                                     | 86 M    | 112 MeV |                   | Run-10     | 4  | 7.7 (31.2)                       | 260 M   | 420 MeV | -2.1              | Run-18, 19, 20 |
| 5                        | 27                                     | 585 M   | 156 MeV | 3.36              | Run-11, 18 | 5  | 7.2 (26.5)                       | 470 M   | 440 MeV | -2.02             | Run-18, 20     |
| 6                        | 19.6                                   | 595 M   | 206 MeV | 3.1               | Run-11, 19 | 6  | 6.2 (19.5)                       | 120 M   | 490 MeV | 1.87              | Run-20         |
| 7                        | 17.3                                   | 256 M   | 230 MeV | 9<br>3            | Run-21     | 7  | 5.2 (13.5)                       | 100 M   | 540 MeV | -1.68             | Run-20         |
| 8                        | 14.6                                   | 340 M   | 262 MeV | 55                | Run-14, 19 | 8  | 4.5 (9.8)                        | 110 M   | 590 MeV | -1.52             | Run-20         |
| 9                        | 11.5                                   | 157 M   | 316 MeV |                   | Run-10, 20 | 9  | 3.9 (7.3)                        | 120 M   | 633 MeV | -1.37             | Run-20         |
| 10                       | 9.2                                    | 160 M   | 372 MeV |                   | Run-10, 20 | 10 | 3.5 (5.75)                       | 120 M   | 670 MeV | -1.2              | Run-20         |
| 11                       | 7.7                                    | 104 M   | 420 MeV | ξ <b>η</b>        | Run-21     | П  | 3.2 (4.59)                       | 200 M   | 699 MeV | -1.13             | Run-19         |
|                          |                                        |         |         | 2                 |            | 12 | 3.0 (3.85)                       | 2000 M  | 750 MeV | -1.05             | Run-18, 21     |
|                          |                                        |         |         |                   |            |    |                                  |         |         |                   |                |

- A very impressive and successful program with many collected datasets, already available and expected results
- ✤ Limitations:
  - ✓ Au+Au collisions only
  - ✓ Among the fixed-target runs, only the 3 GeV data have full midrapidity coverage for protons (|y| ≤ 0.5), which is crucial for physics observables



V. Riabov @ 2nd China-Russia Joint Workshop on NICA Facility,

# Polarization of $\Xi$ and $\Omega$

|                    | Mass<br>(GeV/c²) | cτ<br>(cm) | decay<br>mode        | decay<br>parameter | magnetic<br>moment<br>(μ <sub>N</sub> ) | spin |
|--------------------|------------------|------------|----------------------|--------------------|-----------------------------------------|------|
| ∧ (uds)            | 1.115683         | 7.89       | Λ->πp<br>(63.9%)     | 0.732±0.014        | -0.613                                  | 1/2  |
| ∃⁻ (dss)           | 1.32171          | 4.91       | Ξ⁻->Λπ⁻<br>(99.887%) | -0.401±0.010       | -0.6507                                 | 1/2  |
| $\Omega^{-}$ (sss) | 1.67245          | 2.46       | Ω⁻->ΛК⁻<br>(67.8%)   | 0.0157±0.002       | -2.02                                   | 3/2  |

Phys. Rev. Lett. 126, 162301 (2021)



- Λ, Ξ and Ω have different spins and magnetic moments, different number of s-quarks, less feedback for heavier hyperons
- Direct measurements are difficult due to small values of  $\alpha$
- Measured based on polarization of daughter  $\Lambda$
- AMPT is consistent with measurements
- Polarization of  $\Xi$  is larger compared with  $\Lambda$ :  $\langle P_{\Lambda+\bar{\Lambda}}\rangle(\%) = 0.24 \pm 0.03 \pm 0.03$  $\langle P_{\Xi}\rangle = 0.47 \pm 0.10 \text{ (stat.)} \pm 0.23 \text{ (syst.)}\%$
- $\Lambda$  results are not feed-back corrected (~ 15%)
- The AMPT is consistent with measurements
- Polarization of  $\Xi$  is larger compared with  $\Lambda$
- Earlier freeze-out of multi-strange baryons is consistent with larger value of  $P_H$  for  $\Xi$
- Large uncertainties for  $\Omega$ , can expect larger signal,  $P = \frac{\langle \bar{s} \rangle}{s} \sim \frac{s+1}{3} \frac{\bar{\omega}}{T}$  PRC95.054902 (2017)

#### Feed-down effect

□ ~60% of measured  $\Lambda$  are feed-down from  $\Sigma^* \rightarrow \Lambda \pi$ ,  $\Sigma^0 \rightarrow \Lambda \gamma$ ,  $\Xi \rightarrow \Lambda \pi$ 

 Polarization of parent particle R is transferred to its daughter Λ (Polarization transfer could be negative!)

 $C_{\Lambda R}$  : coefficient of spin transfer from parent R to  $\Lambda$   $S_R$   $\,$  : parent particle's spin

$$\mathbf{S}_{\Lambda}^{*} = C \mathbf{S}_{R}^{*} \qquad \langle S_{y} \rangle \propto \frac{S(S+1)}{3} (\omega + \frac{\mu}{S}B)$$

 $f_{\Lambda R}$  : fraction of  $\Lambda$  originating from parent R  $\mu_R$  : magnetic moment of particle R

$$\begin{pmatrix} \varpi_{c} \\ B_{c}/T \end{pmatrix} = \begin{bmatrix} \frac{2}{3} \sum_{R} \left( f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) S_{R}(S_{R} + 1) & \frac{2}{3} \sum_{R} \left( f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) (S_{R} + 1) \mu_{R} \\ \frac{2}{3} \sum_{R} \left( f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) & \frac{2}{3} \sum_{R} \left( f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) (S_{\overline{R}} + 1) \mu_{\overline{R}} \end{bmatrix}^{-1} \begin{pmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\Lambda}^{\text{meas}} \end{pmatrix}^{-1} \begin{pmatrix} P_{\Lambda}^{\text{meas}}$$

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

| Decay                                            | С      |
|--------------------------------------------------|--------|
| Parity conserving: $1/2^+ \rightarrow 1/2^+ 0^-$ | -1/3   |
| Parity conserving: $1/2^- \rightarrow 1/2^+ 0^-$ | 1      |
| Parity conserving: $3/2^+ \rightarrow 1/2^+ 0^-$ | 1/3    |
| Parity-conserving: $3/2^- \rightarrow 1/2^+ 0^-$ | -1/5   |
| $\Xi^0  ightarrow \Lambda + \pi^0$               | +0.900 |
| $\Xi^- \rightarrow \Lambda + \pi^-$              | +0.927 |
| $\Sigma^0  ightarrow \Lambda + \gamma$           | -1/3   |

Primary  $\land$  polarization will be diluted by 15%-20% (model-dependent)

This also suggests that the polarization of daughter particles can be used to measure their parent polarization! e.g.  $\Xi$ ,  $\Omega$ 

T. Niida, NA61/SHINE Open Seminar 2021

### $\Xi$ and $\Omega$ polarization measurements

$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} \left( 1 + \alpha_H \mathbf{P}_H^* \cdot \hat{\mathbf{p}}_B^* \right)$$

Getting difficult due to smaller decay parameter for  $\Xi$  and  $\Omega$ ...  $\alpha_{\Lambda} = 0.732, \ \alpha_{\Xi^-} = -0.401, \ \alpha_{\Omega^-} = 0.0157$ 

#### spin 1/2

Polarization of daughter  $\Lambda$  in a weak decay of  $\Xi$ : (based on Lee-Yang formula)

T.D. Lee and C.N. Yang, Phys. Rev.108.1645 (1957)

$$\mathbf{P}_{\Lambda}^{*} = \frac{(\alpha_{\Xi} + \mathbf{P}_{\Xi}^{*} \cdot \hat{p}_{\Lambda}^{*})\hat{p}_{\Lambda}^{*} + \beta_{\Xi}\mathbf{P}_{\Xi}^{*} \times \hat{p}_{\Lambda}^{*} + \gamma_{\Xi}\hat{p}_{\Lambda}^{*} \times (\mathbf{P}_{\Xi}^{*} \times \hat{p}_{\Lambda}^{*})}{1 + \alpha_{\Xi}\mathbf{P}_{\Xi}^{*} \cdot \hat{p}_{\Lambda}^{*}}$$
$$\alpha^{2} + \beta^{2} + \gamma^{2} = 1$$
$$\mathbf{P}_{\Lambda}^{*} = C_{\Xi^{-}\Lambda}\mathbf{P}_{\Xi}^{*} = \frac{1}{3}\left(1 + 2\gamma_{\Xi}\right)\mathbf{P}_{\Xi}^{*}.$$
$$C_{\Xi^{-}\Lambda} = +0.944$$

#### spin 3/2

Similarly, daughter  $\Lambda$  polarization from  $\Omega$ :

$$\mathbf{P}_{\Lambda}^* = C_{\Omega^- \Lambda} \mathbf{P}_{\Omega}^* = \frac{1}{5} \left( 1 + 4\gamma_{\Omega} \right) \mathbf{P}_{\Omega}^*.$$

Here  $\gamma_{\Omega}$  is unknown.

- Time-reversal violation parameter  $\beta_{\Omega}$  would be small

-  $a_{\Omega}$  is very small

then  $\gamma_{\Omega} \sim \pm 1$  and the polarization transfer  $C_{\Omega\Lambda}$  leads to:

 $C_{\Omega\Lambda} \approx +1 \text{ or } -0.6$ 

Parent particle polarization can be studied by measuring daughter particle polarization!

T. Niida, NA61/SHINE Open Seminar 2021

26

## NICA Polarization of vector mesons: $K^*(892)$ and $\phi$

#### Non-central heavy-ion collisions:



 $\rho_{0,0}$  is a probability for vector meson to be in spin state =  $0 \rightarrow \rho_{0,0} = 1/3$  corresponds to no spin alignment



- ★ Measurements at RHIC/LHC challenge theoretical understanding  $\rightarrow \rho_{00}$  can depend on multiple physics mechanisms (vorticity, magnetic field, hadronization scenarios, lifetimes and masses of the particles ...)
- Measurements should be extended to lower collision energies



# **Critical fluctuations**

- ♣ Ratio of the 4<sup>th</sup>-to2<sup>nd</sup> moment of the (net)proton multiplicity distribution:
  - ✓ non-monotonic behavior → deviation from non-critical dynamic baseline close to CEP ???



Interpretation of results requires understanding of the role of finite-size effects, which have specific dependence on the size and duration of formed system

## Significant <u>improvement of statistical precision and systematic</u> uncertainties and <u>extra points</u> in the NICA energy range are required