JOINT INSTITUTE FOR NUCLEAR RESEARCH

2nd China-Russia Joint Workshop on NICA Facility China, September 10th –13th, 2024

Study of hyperon and hypernuclei production at NICA

M. Kapishin, V. Kolesnikov, D. Suvarieva, V. Vasendina, <u>A. Zinchenko</u> VBLHEP, JINR, Dubna, Russia

Outline

- ✓ Realistic simulation / reconstruction of hyperons (Λ , Λ_{bar} , Ξ^{\pm} , Ω^{\pm})
- ✓ Machine Learning Method for hyperon selection
- ✓ Realistic simulation / reconstruction of hypernuclei:
 - \checkmark ${}_{\Lambda}{}^{3}\text{H} \rightarrow {}^{3}\text{He} + \pi^{-}$
 - \checkmark $\Lambda^{3}H \rightarrow d + p + \pi^{-}$
 - $\checkmark \Lambda^4 H \rightarrow {}^4 He + \pi^-$
 - $\checkmark \Lambda^4 \text{He} \rightarrow {}^3\text{He} + p + \pi^-$
- ✓ Strangeness analysis at BM@N experiment
- ✓ Summary and Plans

Multi-Purpose Detector @ NICA

MPD at Stage 1

Magnet: 0.5 T superconductor Tracking: TPC Particle ID: TOF, ECal, TPC T0, Triggering: FD Centrality, Event plane: FHCal

- ✓ **TPC tracking:** $/\eta / < 1.6$ (N_{hits} > 15)
- ✓ **TOF coverage:** $|\eta| < 1.4$
- ✓ **PID:** combined $|\eta| < 1.4$, $0.1 GeV/c limited in <math>1.4 < |\eta| < 1.6$ (*dE/dx* only)

Realistic MPD tracking

Simulation procedure (digitization):

- Primary ionization (ionization clusters)
- Drift and diffusion of ionization electrons
- Gas gain fluctuations (Polya distribution)
- Pad response (charge distribution on pad plane)
- Electronics shaping
- Signal digitization (ADC overflow)

Cluster / hit reconstruction

- Precluster finder (group of adjacent pixels in time bin – pad space)
- Hit finder ("peak-and-valley" algorithm either in time bin – pad space (for simple topologies) or in time-transverse coordinate pixel space after Bayesian unfolding (for more complicated topologies)) → COG around local maxima

TPC parameters

Parameter	Value
Magnetic field	0.5 T
Drift gas	P10 (90% Ar + 10% CH ₄)
Drift velocity	5.45 cm/µs
Transverse diffusion at 0.5 T	185 μm/√cm
Longitudinal diffusion	320 μm/√cm
Pad size	$5x12 \text{ mm}^2 (27 \text{ rows}) + 5x18 \text{ mm}^2 (26 \text{ rows})$
Charge spread σ	0.196 mm
Electronics shaping time	180 ns (FWHM)
ADC dynamic range	10 bits
ADC sampling frequency	10 MHz

10.09.2024

Track reconstruction performance

PID performance in TPC & TOF

dE/dx vs momentum in TPC and m^2 vs momentum in TOF (Red lines $\pm 3\sigma$)

Mass square calculated using the measurements of magnetic rigidity (p/q), time-of-flight (T) and trajectory length (*L*):

 $m^{2} = p^{2} \left(\frac{c^{2}T^{2}}{L^{2}} - 1\right)$

Selection criteria for events and identified tracks:

1. $|Z_{PV}| < 50 \text{ cm}$ Primary particles 2. 3. $N_{TPC_hits} \ge 27$ 4. $|\eta| < 1.3$

PID: Efficiency and Contamination

Primaries + secondaries (after GEANT) particles

Eff. = $\frac{\text{particles which are correctly identified}}{\text{all particles of a given species (PDG)}}$

Cont. = $\frac{\text{particles which are falsely identified}}{\text{all identified particles of a given species}}$

10.09.2024

A. Zinchenko

Hyperon reconstruction

- Generators: PHSD, Au+Au @ 11 GeV, 8M min. bias events PHQMD, Bi+Bi @ 9.2 GeV, 40M min. bias events UrQMD, Bi+Bi @ 9.2 GeV, 50M min. bias events
- **Detectors:** start version of MPD with up-to-date TPC & TOF
- **Track reconstruction:** two-pass Kalman filter with track seeding using outer hits (*1st pass*) or leftover inner hits (*2nd pass*)
- Track acceptance criterion: $|\eta| < 1.3$, $N_{TPC hits} \ge 10$ (for reconstructed tracks)
- Particle Identification: dE/dx in TPC & m^2 in TOF, $N_{TPC hits} \ge 20$ (for identified tracks)
- Vertex reconstruction: Kalman filter based formalism working on MpdParticle objects

Analysis goals and Event topology

Goals:

- Hyperons convenient tool for simulation and reconstruction testing
- ✓ Secondary Vertex Reconstruction algorithms development for multistrangeness analysis
- ✓ Optimization of selection criteria in p_T and centrality; hyperon reconstruction efficiency at high p_T
- ✓ Analysis macros for invariant spectra reconstruction
- ✓ Estimates of MPD efficiency and expected event rates
- \checkmark Phase space coverage evaluation
- ✓ Determination of efficiency and production of invariant p_T spectra

Analysis method: Secondary Vertex Finding Technique

Event topology:

- PV primary vertex
 - V_0 vertex of hyperon decay
- dca distance of the closest approach
- path decay length

10.09.2024

$\Lambda, \overline{\Lambda}, \Xi^{-}$ reconstruction (PHSD, 11 GeV, 8M)

$\overline{\Xi}^+$, Ω^- , $\overline{\Omega}^+$ reconstruction (PHSD, 11 GeV, 8M) \blacksquare

Analysis of Λ

10.09.2024

$\overline{\Lambda}$ / Λ ratio

Analysis of Ξ^- and Ω^- hyperons

IVIT

A reconstruction: Machine Learning Method

10.09.2024

A. Zinchenko

Hyperon reconstruction: TC vs TMVA

Hypernuclei reconstruction

Realistic hypernuclei reconstruction with realistic MPD performance

Software development: Towards a realistic simulation of the MPD / NICA

- Realistic description of the response of detectors, development, implementation and optimization of algorithms for reconstruction of signals in detectors
- Realistic track reconstruction procedure in TPC
- Description of ionization losses in TPC gas based on Garfield ++ simulations that are consistent with STAR data
- Realistic identification of electrons, hadrons and light nuclei in TPC and TOF software

Software requirements for hypernuclei reconstruction:

- High-quality reconstruction of the tracks of hadrons and light nuclei
- Good reconstruction of primary and secondary vertices
- High efficiency of identification of both hadrons and light nuclei

Hypertriton reconstruction

Mesonic	decay	of	3 H:	event	topology
---------	-------	----	-----------	-------	----------

- PV primary vertex
- V_0 vertex of hyperon decay
- dca distance of the closest approach
- path decay length

10.09.2024

Decay channel	Branching ratio	Decay channel	Branching ratio
π^{-} + ³ He	24.7%	$\pi^- + p + p + n$	1.5%
$\pi^0 + {}^3H$	12.4%	$\pi^0 + n + n + p$	0.8%
$\pi^- + p + d$	36.7%	d + n	0.2%
$\pi^0 + n + d$	18.4%	p + n + n	1.5%
A. Zinchenko			2

p_T -spectrum of hypertritons

- Invariant spectrum is reconstructed up to $p_T = 4.5 \text{ GeV/c}$
- Rapidity density can be obtained in min. bias Bi+Bi collisions (with a proper fit function)

Hypertriton lifetime analysis

10.09.2024

Hypertriton lifetime

Bi+Bi @ 9.2 GeV, min. bias, 40M b0 < 12 fm, $\tau = [0.1-1.5]$ ns

$$N(\tau) = N(0) \exp\left(-\frac{\tau}{\tau_0}\right) = N(0) \exp\left(-\frac{ML}{cp\tau_0}\right),$$

.

Results for different decay modes are consistent

${}^{4}{}_{\Lambda}H$ and ${}^{4}{}_{\Lambda}He$ reconstruction

Branching ratio: 75%

Branching ratio: 32%

NICA

Signal embedding technique: The Monte Carlo event sample was enriched by signal particles (hypernuclei), distributed according to the η - p_T phase space given by the PHQMD generator **Equivalent statistics:** ~140 M events for ${}_{\Lambda}{}^4$ H and for ${}_{\Lambda}{}^4$ He

Strangeness analysis at BM@N experiment

Configuration of BM@N detector in Xe+CsI run

Central tracker performance

A selection: bins y vs m_T

K^0_{s} selection: bins y vs m_T

140

10.09.2024

A. Zinchenko

Lifetime of Λ : MC vs Data

Decay formula:

 $dN / dt = N_0 / \tau * exp(-t/\tau),$ $N_0 = p0 * p1 = 54574$

Proper life time: $\tau = lm / (pc)$

MC (1M events): 0.270 ± 0.011 ns Data (1M events): 0.265 ± 0.009 ns

10.09.2024

BM@

10.09.2024

Summary

Look into the future

- The MPD reconstruction and identification packages have been tested using hyperons and hypernuclei as a testing tool
- Clear peaks of different hyperons and hypernuclei ${}_{\Lambda}{}^{3}$ H, ${}_{\Lambda}{}^{4}$ H and ${}_{\Lambda}{}^{4}$ He in invariant mass spectra have been obtained
- p_T -spectra of hyperons and ${}_{\Lambda}{}^{3}$ H have been obtained
- Λ^3 H decay time has been extracted
- Collected events of Xe+CsI interactions from the BM@N spectrometer are being processed and analyzed

- Test of Machine Learning Methods for particle identification and hypernuclei selection at NICA/MPD
- Data analysis at BM@N (synergy with fixed target program of MPD)
- Performance evaluation of the MPD setup with the 1st stage ITS (3 layers) for strangeness studies

