

Recent STAR results on strangeness/hypernuclei production

Xianglei Zhu Tsinghua University 9/11/2024

The 2nd China-Russia Joint Workshop on NICA Facility Qingdao, 2024.9.10-12

Why strangeness?

• Strange quarks

- Not exist in colliding nuclei
- Current mass ~100 MeV $< T_c$
- Easily pair-produced in de-confined QGP medium

\rightarrow Strangeness enhancement !

- Hadrons with (multiple) strange quarks
 - Small hadronic cross section
 - Sensitive to the early stage dynamics of the medium
 - Can be easily reconstructed and identified in experiment, up to high p_T !

→ Systematic study of medium properties!

Rafelski & Müller, 1982

Motivation

- Nuclear modification factor of strange hadrons to evaluate the partonic energy loss in deconfined medium.
- Strange baryon-to-meson ratio can be utilized to understand hadronization mechanism.
- Rapidity density of (anti-)strange baryons may give insight on the baryon stopping mechanism.

STAR, PRC 102, 034909 (2020) **3**

Motivation

Beam Energy Scan (BES) program:

- Search for the onset of deconfinement
- Search for the first-order phase transition \succ
- \blacktriangleright Search for the critical point

Yi Fang, Xiongxiong Xu, Weiguang Yuan, QM23/SQM24/CPS24 Hongcan Li, Xiujun Li, SQM24; Yingjie Zhou, iHIC24

Quark-Gluon

inner TPC ► Large and uniform acceptance Excellent particle identification TOF $\eta: 1.0 \rightarrow 1$ Improved dE/dx resolutio **STAR** > $p_{\rm T}$ threshold: 120MeV → 60MeV

5

Particle identification and reconstruction

$p_{\rm T}$ spectra of K_s^0 and Λ at 19.6 GeV

$p_{\rm T}$ spectra of Ξ^- , ϕ and $\Omega^-(\overline{\Omega}^+)$ at 19.6 GeV

Rapidity spectra of $\Lambda(\overline{\Lambda})$ at 19.6 and 14.6 GeV

- Rapidity spectra of anti-baryons($\overline{\Lambda}$) are Gaussian-like distributions.
- ➢ Rapidity distribution of baryons(Λ) are wider than that of anti-baryons (Λ̄).
 - ✓ Extra contributions from stopped baryons
- Similar trends observed by NA49.

NA49, PRC 78, 034918 (2008)

Rapidity spectra of K_s^0 , Ξ^- and $\overline{\Xi}^+$ at 19.6 and 14.6 GeV

Rapidity spectra of mesons (K_s^0) and anti-baryons $(\overline{\Xi}^+)$ are Gaussian-like distributions.

Rapidity distribution of baryons(Ξ⁻) are wider than the distributions of the antibaryons(Ξ⁺) in Au+Au collisions.

Rapidity spectra of ϕ

- > Rapidity spectra of ϕ are Gaussian-like distributions
- Rapidity distribution become wider with increasing energy

Nuclear modification factor at 19.6, 14.6 and 7.7 GeV

- > R_{CP} of K_s^0 increases with decreasing collision energies at p_T >2GeV/c:
 - \checkmark Partonic energy loss less important
 - \checkmark Cold nuclear matter effect more important
- ➢ R_{CP} tends to be flat and larger than unity at p_{T} ≥2GeV/c.
 - \checkmark Radial flow
 - \checkmark Quark coalescence
- The enhancement is stronger for Ω compare to Ξ, Λ and K_s^0
 - ✓ A stronger enhancement for multi-strange particles is a proposed signature for QGP formation.

Nuclear modification factor for ϕ

- BES-II result is consistent with BES-I with greatly improved precision
- $R_{CP}(\phi) > R_{CP}(K_S^0)$ at $2 < p_T < 4 \text{ GeV/c}$
- $R_{CP} < 1$ for higher p_T at 200 GeV \rightarrow Partonic energy loss in the QGP medium
- $R_{CP} > 1$ for higher p_T at 19.6 GeV and lower energies \rightarrow Cronin-type interactions, radial flow and/or coalescence hadronization

$\overline{\Lambda} / K_s^0$ ratio at 54.4, 19.6 and 14.6 GeV

$\Omega(sss)/\phi(s\overline{s})$ ratio

Similar to the observation at $\sqrt{s_{NN}} = 200$ GeV, the Ω/ϕ ratio increases from peripheral to central collisions at intermediated $p_{\rm T}$, which is compatible with the existence of QGP at $\sqrt{s_{NN}} \ge 7.7$ GeV

Centrality dependence of ϕ production

Fit function:
$$\frac{\mathrm{dN/dy}}{N_{\text{part}/2}} = k \times N_{\text{part}}^{\alpha-1}$$

- Common centrality dependence for ϕ , Λ , K production at 19.6GeV.
- $\succ \alpha$ parameter for ϕ is slightly larger than that for Λ , K and less than UrQMD predictions

Centrality and Energy dependence of ϕ/K^- ratio

- The ϕ/K^- ratio exhibits no clear dependency on centrality or energy across the range of $\sqrt{s_{NN}} = 7.7$ to 19.6 GeV
- The ϕ/K^- ratio reaches the GCE limit at $\sqrt{s_{NN}} = 7.7$, 14.6 and 19.6 GeV

024905

Strangeness measurements in fixed-target collisions

• Particle rapidity coverage from beam rapidity to mid-rapidity

Strangeness measurements in fixed-target collisions

Hongcan Li, SQM24

STAR: Phys. Lett. B 831 (2022) 137152; arXiv: 2407.10110

• Comprehensive measurement of strangeness production at different energies from 3 to 4.5 GeV

Centrality dependence of mid-rapidity yields

Scaling formula:
Yield =
$$c \times \langle N_{part} \rangle^{\alpha_S}$$

- Single strange hadrons K_S^0 and Λ^0 follow common scaling trend, but double strange hadron Ξ^- deviate from the common scaling trend
- Solution Mode \square NN \rightarrow NAK \square NN \rightarrow NEKK

Energy dependence of scaling parameter α_s

- Rapid decrease of scaling parameter α_S for Ξ^- from 4.5 to 7.7 GeV, and saturate at high energy
 - The mechanism of strange hadron production may change
 - Strange hadron production predominantly from hadronic interactions at $\sqrt{s_{NN}} < 4.5$ GeV
- UrQMD qualitatively reproduces the energy dependence, but cannot quantitatively describe all energies
 - ➢ likely due to missing medium effects

UrQMD: cascade mode, hard EOS S.A. Bass, et.al. Prog. Part. Nucl. Phys. 41 (1998)

Energy dependence of mid-rapidity yields

- Rich structure in strangeness excitation functions
 - Production mechanisms is different at low and high energies (high and low baryon density)
 - **Partonic interaction (pair production)**

 $gg \to s\overline{s} \text{ or } q\overline{q} \to s\overline{s}$

Hadronic interaction (associated production)

 $BB \rightarrow BYK \ or \ BB \rightarrow B\Xi KK$

- **B:** N, p, Δ , etc. Y: Λ , Σ , etc. K: K⁺, K⁰
- > Baryon-dominated to meson-dominated transitions \Box K⁰_s and Λ^0 mid-rapidity yield cross at ~ 8 GeV
- ➢ First measurement of Ξ[−] near- / sub-threshold energies in Au+Au collision

Energy dependence of mid-rapidity yield ratios

→Change of medium properties at the high-density region

UrQMD: cascade mode, hard EOS

Kinetic freeze-out properties at 3 GeV

*T*_{kin} of Λ and *K*⁰_S at 3 GeV is lower than *π*, *K*, *p* at higher energy collisions
F Similar observations for protons and deuterons, implying different EOS at freeze-out

Hypernuclei measurements in BES-II

- Hypernuclei measurements are scarce in HI collision experiments
- At low beam energies, hypernuclei production is expected to be enhanced due to high baryon density

RHIC BES-II offers great opportunity for hypernuclei measurements.

B. Dönigus, Eur. Phys. J. A (2020) 56:280 A. Andronic et al. PLB (2011) 697:203–207

Hypertriton production measurements in BES-II

$^{4}_{\Lambda}$ H and $^{4}_{\Lambda}$ He production measurements in BES-II

Different trend in ${}^{4}_{\Lambda}$ H rapidity distribution in central and midcentral collisions, which reproduced by JAM+coalescence model

Energy dependence of hypertriton production

- Yields increase strongly from $\sqrt{s_{NN}} = 27$ GeV to ~4 GeV
- Peak at 3-4 GeV
- Hadronic transport + coalescence models qualitatively describe the data
- Thermal model overestimates the data

First energy dependence of ${}^3_{\Lambda}H$ production yields in the high-baryon-density region

Energy dependence of hypernuclei to Λ yield ratios

Thermal model over-predicts ${}^{3}_{\Lambda}H/\Lambda$ and ${}^{4}_{\Lambda}H/\Lambda$ ratios.

Summary

Comprehensive strangeness measurements in STAR beam energy scan phase II.

- → Baryon enhancement is observed from 7.7 to 200GeV → consistent with QGP formation.
- Strangeness and hypernuclei production dominated by hadronic interactions at 3 GeV.
- ➤ Looking forward to the search for the onset of deconfinement in BES-II and NICA/MPD.