# The 2nd China-Russia Joint Workshop on NICA Facility Deep Learning for HIC: the nuclear EoS

Long-Gang Pang 庞龙刚 Central China Normal University 夸克与轻子物理教育部重点实验室 Sep. 9-12, ShanDong University





Yann LeCun

Deep learning is constructing networks of parameterized functional modules & training them from examples using gradient-based optimization



### DL: Neural Network with multi hidden layers









# DL nuclear physics across energy scales



- Deep generative models (such as normalizing flow and the diffusion model) have been used to sample Field Configureations in Lattice QCD
- Deep learning is widely used to solve inverse problems of HIC to study the EoS of hot QCD matter, the phase transition, the transport coefficients eta/s, the impact parameter, ...
- Deep neural network is used to represent the manybody wave function of nucleus, to solve variational problems in ab initio calculations
- Deep learning is used to solve inverse problems of HIC to study the nuclear structure, for instance, the nuclear deformation, neutron skin, alpha cluster and short range correlation

▶ ...



# Different approaches for nuclear EoS



(1) Soft probe: low Pt < 3 GeV/C</li>hydrodynamics, transport model, ...

(2) Hard probe: Pt > 10 GeVjet eloss, medium response

(3) Theoretical calculations Lattice QCD, HRG, fRG, DSE, Quasi Parton Model, ...



# Soft probe: relativistic hydro



#### Name of CLVisc:

CCNU-LBNL Viscous Hydro, CCNU = Central China Normal University
 A 3+1D viscous hydro parallized on GPU using OpenCL

Purpose: Describe the non-equilibrium space-time evolution of hot QCD matter Feature: 60 times faster for hydrodynamic evolution, 100 times faster for hadronization

> L.G. Pang, Q. Wang and X. N. Wang, PRC 86 (2012) 024911 L.G. Pang, B.W. Xiao, Y. Hatta, X.N.Wang, PRD 2015 L.G. Pang, H.Petersen, XN Wang, PRC97(2018)no.6,064918



# CLVisc for different EoS



eta/s = 0 Lattice QCD EoS (smooth cross over)

eta/s = 0 First order phase transition

eta/s = 0.08 Lattice QCD EoS

eta/s = 0.08 First order phase transition eta/s: shear viscosity / entropy density

Will the effect of EoS survive the dynamical evolution and exist in the final state hadrons?



### CLVisc for top RHIC and LHC energies

10

#### Longitudinal momentum distribution



#### Transverse momentum distribution







### CLVisc for beam energy scan





- + net baryon conservation
  + evolution of baryon diffusion current
- + extended to BES regions

XY Wu, GY Qin, LG Pang, XN Wang, PRC 105 (2022) 3, 034909



### EoS for different phase transition types



baryon chemical potential  $\mu_B$ 



### Determine nuclear phase transitions



Nature Communications 2018, LG. Pang, K.Zhou, N.Su, H.Petersen, H. Stoecker, XN. Wang.



### Spinodal vs Maxwell 1st order phase transition



J. Steinheimer, L.G. Pang, K. Zhou, V. Koch and J. Randrup, JHEP 12 (2019) 122



### Capture more local correlations

#### **Dynamical Edge Convolution Network**



Fig. 2. Left: Computing an edge feature,  $e_{ij}$  (top), from a point pair,  $x_i$  and  $x_j$  (bottom). In this example,  $h_{\Theta}$ () is instantiated using a fully connected layer, and the learnable parameters are its associated weights. **Right**: The EdgeConv operation. The output of EdgeConv is calculated by aggregating the edge features associated with all the edges emanating from each connected vertex.



### Looking for self similarity in momentum space



Self similarity, scaling invariance



#### PLB 827(2022) 137001, Y.-G. Huang, L.-G. Pang, X.F. Luo and X.-N. Wang



Skyrme potential + IMQMD

off-diagonal = misclassified



Protons, Predicted labels

PLB 822 (2021) 136669, Y.J Wang, F.P. Li, Q.F. Li, H.L. L<sup>"</sup>u, and K. Zhou



### Auto Encoder for order parameter

#### PHYSICAL REVIEW RESEARCH 2, 043202 (2020)

#### Nuclear liquid-gas phase transition with machine learning

Rui Wang<sup>1,2,\*</sup> Yu-Gang Ma,<sup>1,2,†</sup> R. Wada,<sup>3</sup> Lie-Wen Chen<sup>9,4</sup> Wan-Bing He,<sup>1</sup> Huan-Ling Liu,<sup>2</sup> and Kai-Jia Sun<sup>3,5</sup>





## Hard probe: Jet eloss and medium response

#### Can Being Underwater Protect You From Bullets?



**56** If the bullet is shot from an angle of 30 Degrees, then being underwater in the range of 3-5 feet (0.9-1.5 meters) can ensure safety from most guns.



Jet quenching in hot QGP





Nuclear EoS: 
$$c_s^2 = \frac{dP}{d\epsilon} = \sin^2 \theta$$

Shear Viscosity: width of the shock wave



- Random production locations and propagating directions relative to collective flow
- Tilted by different **path length** and **collective flow**



L.M. Satarov, H. Stoecker, I.N. Mishustin, PLB 627 (2005) 64-70



### Training data: CoLBT(LBT + CLVisc)

$$p\partial f(p) = -C(p) \quad (p \cdot u > p_{cut}^0)$$
$$\partial_{\mu} T^{\mu\nu}(x) = j^{\nu}(x)$$
$$j^{\nu} = \sum_{i} p_i^{\nu} \delta^{(4)}(x - x_i) \theta(p_{cut}^0 - p \cdot u)$$

LBT: YY He, T Luo, XN Wang, Y Zhu, PRC 91 (2015) 054908, PRC 97 (2018) 1, 019902

CLVisc:

LG Pang, Q Wang, XN Wang, PRC 86 (2012) 024911

**LG Pang, H Petersen, XN Wang,** PRC 97 (2018) 6, 064918

XY Wu, GY Qin, LG Pang, XN Wang, PRC 105 (2022) 3, 034909



CoLBT:

W Chen, T Luo, SS Cao, LG Pang, XN Wang, PLB 777 (2018) 86-90



$$p_{1}\partial f_{1} = -\int dp_{2}dp_{3}dp_{4}(f_{1}f_{2} - f_{3}f_{4}) |M_{12\rightarrow 34}|^{2} (2\pi)^{4} \delta^{4}(\sum_{i} p^{i}) + inelastic$$
Medium-induced gluon(HT):  

$$\frac{dN_{g}}{dzd^{2}k_{\perp}dt} \approx \frac{2C_{A}\alpha_{s}}{\pi k_{\perp}^{4}} P(z)\hat{q}(\hat{p} \cdot u)sin^{2}\frac{k_{\perp}^{2}(t-t_{0})}{4z(1-z)E}$$
Tracked partons:  
Jet shower partons  
Thermal recoil partons  
Radiated gluons  
Negative partons(Back reaction induced by energy-momentum conservation)

YY He, T Luo, XN Wang, Y Zhu, PRC 91 (2015) 054908, PRC 97 (2018) 1, 019902



# DL assisted jet tomography (gamma-jet)



Z Yang, YY He, W Chen, WY Ke, LG Pang, XN Wang, EPJC 83 (2023) 7, 652



# DL assisted jet tomography



Z Yang, YY He, W Chen, WY Ke, LG Pang, XN Wang, EPJC 83 (2023) 7, 652



### Enhance the Diffusion Wake signal



Z Yang, YY He, W Chen, WY Ke, LG Pang, XN Wang, EPJC 83 (2023) 7, 652 Z Yang, T Luo, W Chen, LG Pang, XN Wang, PRL 130 (2023) 5, 052301



# Effective theory: DL For Quasi Particle Mass



#### FuPeng Li, HL Lu, LG Pang, GY Qin, PLB 2023

$$\ln Z(T) = \ln Z_g(T) + \ln Z_{u,d}(T) + \ln Z_s(T),$$

Fermi-Dirac distributions,

$$\ln Z_g(T) = -\frac{16V}{2\pi^2} \int_0^\infty p^2 dp$$
  

$$\ln \left[ 1 - \exp\left(-\frac{1}{T}\sqrt{p^2 + m_g^2(T)}\right) \right], \quad (2)$$
  

$$\ln Z_{q_i}(T) = +\frac{12V}{2\pi^2} \int_0^\infty p^2 dp$$
  

$$\ln \left[ 1 + \exp\left(-\frac{1}{T}\sqrt{p^2 + m_{q_i}^2(T)}\right) \right], \quad (3)$$



quarks,  $m_s(T, \theta_2)$  for strange quark and  $m_g(T, \theta_3)$  for gluons, where  $\theta_1$ ,  $\theta_2$  and  $\theta_3$  are the parameters in DNN shown in Fig. 1.

The resulting pressure and energy density are computed using the following statistical formulae,

$$P(T) = T\left(\frac{\partial \ln Z(T)}{\partial V}\right)_T,\tag{5}$$

$$\epsilon(T) = \frac{T^2}{V} \left(\frac{\partial \ln Z(T)}{\partial T}\right)_V,\tag{6}$$





#### FuPeng Li, HL Lu, LG Pang, GY Qin, PLB 2023



# Looking for CEP using Quasi Parton Model





#### Model:

Deep learning Quasi Parton Model Effective theory of strongly coupled QGP and nuclear matter at finite baryon density Training data: Lattice QCD + HRG

PRD 95, 054504 (2017) PRL118, 182301 (2017) PRD 90, 094503 (2014)



### Predictions of DL quasi parton model



Speed of sound





### The learned Mass and EoS



0.030 <sup>4</sup> [Ge√]4 E [Ge√]4

0.020

0.015

0.010

0.005

0.25 °S

0.20

0.15

0.10



### Reviews

| Colloquium: Machine learning in nuclear physics                                                                                                                                                              |            |                           |                                                                                                  | High energy nuclear physics meets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amber Boehnlein, Markus Diefenthaler, Nobuo Sato, Malachi Schram, Veronique Ziegler, Cristiano Fanel<br>Morten Hjorth-Jensen, Tanja Horn, Michelle P. Kuchera, Dean Lee, Witold Nazarewicz, Peter Ostroumov, |            |                           |                                                                                                  | Machine Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Orginos, Alan Poon, Aln-Nian Wang, Alexander Scheinker, Michael S. Smith, and Long-Gang Pang<br>Rev. Mod. Phys. <b>94</b> , 031003 – Published 8 September 2022                                              |            |                           |                                                                                                  | Wan-Bing He (Fudan U., Shanghai and Fudan U.), Yu-Gang Ma (Fudan U., Shanghai and Fudan U.), Long-Gang<br>Pang, Huichao Song (CCNU, Wuhan, Inst. Part. Phys. and Hua-Zhong Normal U., LQLP and Peking U.), Kai<br>Zhou (Frankfurt U., FIAS) (Mar 12, 2023)                                                                                                                                                                                                                                                                                                                        |
| Article                                                                                                                                                                                                      | References | No Citing Articles PDF HT | ML Export Citation                                                                               | e-Print: 2303.06752 [hep-ph]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                              |            |                           |                                                                                                  | HEPML-LivingReview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| >                                                                                                                                                                                                            | ADOTDAOT   |                           |                                                                                                  | A Living Review of Machine Learning for Particle Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                              | ABSTRACT   |                           |                                                                                                  | Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy physics. The<br>goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these approaches to<br>experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as possible to incorporate the latest<br>developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small set of topics to be as useful as |
| Advances in machine learning methods provide tools that have broad applicability in scientific resea<br>These techniques are being applied across the diversity of nuclear physics research topics, leading  |            |                           | at have broad applicability in scientific resea<br>y of nuclear physics research topics, leading |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Exploring QCD matter in extreme conditions with Machine                                                                                                                                                      |            |                           |                                                                                                  | download review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Learning                                                                                                                                                                                                     |            |                           |                                                                                                  | The purpose of this note is to collect references for modern machine learning as applied to particle physics. A minimal number of                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Kai Zhou (Frankfurt II, EIAS) Lingviao Wang (Frankfurt II, EIAS) Long-Gang Pang (CCNII, Wuhan                                                                                                                |            |                           |                                                                                                  | paper is listed in this document does not endorse or validate its content - that is for the community (and for peer-review) to decide.<br>Furthermore, the classification here is a best attempt and may have flaws - please let us know if (a) we have missed a paper you think                                                                                                                                                                                                                                                                                                  |
| Inst. Part. Phys.), Shuzhe Shi (Stony Brook U.)                                                                                                                                                              |            |                           |                                                                                                  | should be included, (b) a paper has been misclassified, or (c) a citation for a paper is not correct or if the journal information is now available. In order to be as useful as possible, this document will continue to evolve so please check back before you write your next paper.                                                                                                                                                                                                                                                                                           |
| Mar 27, 2023                                                                                                                                                                                                 |            |                           |                                                                                                  | If you find this review helpful, please consider citing it using \cite{hepmllivingreview} in HEPML.bib.  • Reviews                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 146 pages                                                                                                                                                                                                    |            |                           |                                                                                                  | <ul> <li>Modern reviews</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e-Print: 2303.15136 [hep-ph]                                                                                                                                                                                 |            |                           |                                                                                                  | <ul> <li>Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning [DOI]</li> <li>Deep Learning and its Application to LHC Physics [DOI]</li> </ul>                                                                                                                                                                                                                                                                                                                                                                               |



- For soft probes, DL serves as an EoS-meter
- •For hard probes, DL assisted jet tomography aids in the investigation of QCD EoS through Mach cones
- DL and auto-diff are widely used to represent unknown functions to construct effective theories of QCD EoS.
- DL quasi parton model are extended to finite muB region



### $(\mu_{BC}, \alpha_{\text{diff}}, w, \rho) \mapsto P(T, \mu_B) \mapsto \{\text{acceptable, unstable, acausal}\}.$

4 parameters from 3D Ising model Q

QCD EoS

Lables for classification



D. Mroczek, M. Hjorth-Jensen, J. Noronha-Hostler, P. Parotto, C. Ratti, and R. Vilalta, PRC 107, 054911



## Active learning procedure



D. Mroczek, M. Hjorth-Jensen, J. Noronha-Hostler, P. Parotto, C. Ratti, and R. Vilalta, PRC 107, 054911







### What has been learned (Global interpretation)



Olah, et al., "Feature Visualization", Distill, 2017.

shallow layers

deep layers



### Local interpretation



- Ablation studies: LIME or Prediction Difference Analysis. M. Tulio Ribeiro, et. al. "Why should I trust you?"
- Class activation map: map the deep layers to the input image, look for the most important region for decision making. BoLei Zhou, et. al. "Learning Deep Features for discriminative localization"
- Layer-wise relevance propagation: set the relavance of the output layer to 1, propagate the relevance to the input data, to look for the most important region for decision making.



### Generativive models: MC sampling



Similar to Box Muller algorithm



Flow-based generative models for Markov chain Monte Carlo in lattice field theory Albergo, Kanwar, Shanahan 1904.1207



### Explore QCD phase structure using HIC





### Determining nuclear deformation





L.-G. Pang, K. Zhou and X.-N. Wang, arXiv:1906.06429



# Challenges

Fig from S. Bass QM2017 (Bayesian method)

#### **Model Parameter:**



(1) Multiple parameters entangle with multiple observables

(2) Different parameter combinations describe the same data



# Bayesian analysis QCD EoS

The  $c_s^2$  is parameterized as a function of energy density in the following,

$$c_s^2(\epsilon) = c_s^2(\epsilon_h) + \left(\frac{1}{3} - c_s^2(\epsilon_h)\right) \frac{X_0 x + x^2}{X_0 x + x^2 + X'^2}$$
(2.12)

where  $X_0 = \sqrt{12}RX'c_s(\epsilon_h)$ ,  $x \equiv \ln \frac{\epsilon}{\epsilon_h}$ ,  $\epsilon_h$  is the energy density at T = 165 MeV, R and X' are the two parameters in the EoS to be determined. Randomly choosing R and X' from the range -0.9 < R < 2 and 0.5 < X' < 5 generate the unconstrained EoS that varies in a large region between  $c_s^2 = 0.05$  and  $c_s^2 = 0.33$ , as shown in Fig. 2.4-a. This corresponds to the a priori distribution of  $c_s^2$  parameters together with other 12 parameters in the model  $P(\theta)$ .

Likelihood:

$$P(D|\theta) = \prod_i \exp\left(-(z_i(\theta) - z_{i,\exp})^2/2\right)$$

Posterior:  $P(\theta \mid D) \propto P(D \mid \theta)P(\theta)$ 



S. Pratt, E. Sangaline, P. Sorensen, H. Wang, PRL. 114 (2015) 202301.













### Data representation





### Capture more local correlations

#### **Dynamical Edge Convolution Network**



Fig. 2. Left: Computing an edge feature,  $e_{ij}$  (top), from a point pair,  $x_i$  and  $x_j$  (bottom). In this example,  $h_{\Theta}$ () is instantiated using a fully connected layer, and the learnable parameters are its associated weights. **Right**: The EdgeConv operation. The output of EdgeConv is calculated by aggregating the edge features associated with all the edges emanating from each connected vertex.





S. Soma, L. Wang, S. Shi, H. Stöcker, K. Zhou, PRD 107, (2023) 083028



### method





# Predictions of DL quasi parton model



 $\chi_k^{\text{lattice}} = \partial^k (p/T^4) / \partial (\mu/T)^k.$ 

 $(\mu_B, T)$ : (630.1 ± 81.42, 115.9 ± 15.46)MeV,



# Effective theory: DL Quasi parton model





screened, dressed, regularized, quasi particle







#### Pb speed $\sim$ 99.9999% c

Au speed  $\sim$ 99.99% c









# If it is possible to locate the initial jets

