Huichao Song Peking University

2nd China-Russia Joint Workshop on NICA Facility

Qing-Dao 2024年09月10-13日

中国科学 物理学 力学 天文学《高能核-核碰撞和原子核结构专题》封面

Landscape of nuclear physics

Landscape of nuclear physics

Relativistic heavy ion physics

Relativistic heavy ion collisions

- **- create and study QGP**
- **- the QCD phase diagram**
- **- the deconfinement & chiral phase transition**
- **- the QCD vacuum**

little bang: the different stage for a relativistic heavy ion collisions

Initial state

Hydro expansion of QGP or hadron gas

QGP

Preequilibrium

hadronisation

Freeze-out

QGP-the most perfect fluid in the world

News Archives

Photo Archive

Streaming Video

@brookhaven TODAY

Fact Sheets

Science Magazine

Management Bios

About Brookhaven

:: Physics News

LHC to Restart in 2009

Disappearing Superconductivity Reappears $-$ in 2-D

Electron Pairs Precede High-Temperature Superconductivity

World's biggest computing grid launched

First Beam for Large Hadron Collider

Get BNL News via RSS

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

April 18, 2005

TAMPA, FL -- The four detector groups conducting research at the Relativistic Heavy Ion Collider (RHIC) -- a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory -- say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In peer-reviewed papers summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a liquid.

"Once again, the physics research sponsored by the Department of Energy is producing historic results," said Secretary of Energy Samuel Bodman, a trained chemical engineer. "The DOE is the principal federal funder of basic research in the physical sciences, including nuclear and high-energy physics. With today's announcement we see that investment paying off."

"The truly stunning finding at RHIC that the new state of matter created in the collisions of gold ions is more like a liquid than a gas gives us a profound insight into the earliest moments of the universe," said Dr. Raymond L. Orbach, Director of the DOE Office of Science.

Also of great interest to many following progress at RHIC is the emerging connection between the collider's results and calculations using the methods of string theory, an approach that attempts to explain

BNL News, 2005

Secretary of Energy Samuel Bodman

Hydrodynamics & collective flow in large systems (Au+Au & Pb+Pb collisions)

Viscous hydrodynamics

Conservation laws:

 $\partial_{\mu}T^{\mu\nu}(x) = 0$. $\partial_{\mu}N_i^{\mu}(x) = 0$,

2nd order I-S equ:

$$
\dot{\Pi} = -\frac{1}{\tau_{\Pi}} \bigg[\Pi + \zeta \theta - l_{\Pi q} \nabla_{\mu} q^{\mu} + \Pi \zeta T \partial_{\mu} \left(\frac{\tau_{\Pi} u^{\mu}}{2\zeta T} \right) \bigg],
$$
\n
$$
\Delta_{\nu}^{\mu} \dot{q}^{\nu} = -\frac{1}{\tau_{q}} \bigg[q_{\mu} + \lambda \frac{nT^{2}}{e + p} \nabla^{\mu} \frac{\nu}{T} + l_{q\pi} \nabla_{\nu} \pi^{\mu \nu} + l_{q\Pi} \nabla^{\mu} \Pi - \lambda T^{2} q^{\mu} \partial_{\mu} \left(\frac{\tau_{q} u^{\mu}}{2\lambda T^{2}} \right) \bigg],
$$
\n
$$
\Delta^{\mu \alpha} \Delta^{\nu \beta} \dot{\pi}_{\alpha \beta} = -\frac{1}{\tau_{\pi}} \bigg[\pi^{\mu \nu} - 2\eta \nabla^{\langle \mu} u^{\nu \rangle} - l_{\pi q} \nabla^{\langle \mu} q^{\nu \rangle} + \pi_{\mu \nu} \eta T \partial_{\alpha} \left(\frac{\tau_{\pi} u^{\alpha}}{2\eta T} \right) \bigg],
$$
\n
$$
\text{Input: \text{ "EOS"} \quad \mathcal{E} = \mathcal{E}(\mathbf{p}) \qquad \text{initial and final conditions}
$$

Extract QGP viscosity with hydrodynamics

-An quantitatively extraction of the QGP viscosity with iEBE-VISHNU and the massive data evaluation $-\eta/s(T)$ is very close to the KSS bound of $1/4\pi$

J. Bernhard, S. Moreland, S.A. Bass, J. Liu, U. Heinz, PRC 2015

QGP: most perfect liquid

Powerful predictions from hydrodynamics

H. Xu, Z. Li and H. S*, Phys. Rev. C93, no. 6, 064905 (2016); W. Zhao, H. Xu and **H. S*,** Eur. Phys. J. C 77, no. 9, 645 (2017); X. Zhu, Y. Zhou, H. Xu and **H. S*,** Phys. Rev. C95, no. 4, 044902 (2017); W. Zhao, L. Zhu, H. Zheng, C. M. Ko and **H. S*.,** Phys. Rev. C 98, no. 5, 054905 (2018); Li, Zhao, Zhou, **H.S***, in preparation (2020) … … … …

<u>The QGP has been created in relativistic heavy ion collisions</u>

<u>The QGP has been created in relativistic heavy ion collisions</u>

How tiny the QGP droplet could be?

Correlations & Flow in small systems

System size scan:

Pb+Pb Xe+Xe O+O p-p collisions …

Geometry scan:

p-Au d+Au He-Au

Other collision systems:

Correlations & Flow in p-Pb collisions

-Many flow-like signals have been observed in high multiplicity p-Pb collisions

Flow in p-Pb -- Hydrodynamics Simulations

NCQ scaling of v_2 in p-Pb collisions

p+Pb collisions

-Where does such approximate NCQ scaling of $v₂$ come from? -Is it an indication of partonic degree of freedom?

ALICE data: PLB,726,164 (2013). CMS data: PRL, 121, 082301 (2018). ATLAS data: PRC, 96, 024908 (2017).

QGP was discovered @RHIC -strong elliptic flow -jet quenching -VCQ scaling of elliptic flow Au+Au collisions

Simple coalescence for large systems (**Au+Au**)

$$
\frac{dN_{M}}{d^{3}P_{M}} = g_{M} \int d^{3}x_{1}d^{3}p_{1}d^{3}x_{2}d^{3}p_{2}f_{q}(x_{1}, p_{1})f_{\overline{q}}(x_{2}, p_{2}) \times W_{M}(y, k)\delta^{(3)}(P_{M} - p_{1} - p_{2})
$$
\n
$$
\frac{dN_{B}}{d^{3}P_{B}} = g_{B} \int d^{3}x_{1}d^{3}p_{1}d^{3}x_{2}d^{3}p_{2}d^{3}x_{3}d^{3}p_{3}f_{q_{1}}(x_{1}, p_{1})
$$
\n
$$
\times f_{q_{2}}(x_{2}, p_{2})f_{q_{3}}(x_{3}, p_{3})W_{B}(y_{1}, k_{1}; y_{2}, k_{2}) \times \delta^{(3)}(P_{B} - p_{1} - p_{2} - p_{3})
$$

Complicated coalescence for small systems (**p+Pb,p+p**)

-the effects from jet/mini-jets -fragmentations from high p_T

Complicated Coalescence processes:

- **- thermal - thermal parton coalescence**
- **- thermal - hard parton coalescence**
- **- hard - hard parton coalescence**

Frag contributes more at intermediate p_T

- thermal - thermal parton coalescence

Hydro-Coal-Frag Hybrid Model

Thermal hadrons (VISH2+1):

-generated by hydro. with Cooper-Frye. -Meson: P_T <**2** P_1 **;** baryon: P_T <**3** P_1 **.**

Coalescence hadrons (Coal Model):

-generated by coalescences model including thermal-thermal, thermal-hard & hard-hard parton coalescence.

Fragmentation hadrons (LBT):

-Hard partons **generated by PYTHIA8, then suffered energy loss by LBT**

UrQMD afterburner:

-All hadrons are feed into UrQMD for hadronic evolution, scatterings and decays.

Zhao, Ko, Liu, Qin & Song. Phys. Rev. Lett. 125 7 072301(2020)in

Main Parameters:

-Thermal hadrons **from hydro with** P_T < P_1 . *-Hard partons* **from LBT with** $P_T > P_2$ Fixed by the p_{T} spectra P_{T1} = 1.6GeV and P_{T2} = 2.6GeV

VCQ scaling of $v₂$ & hint partonic degree of freedom

-At intermediate p_T , Hydro-Coal-Frag model obtains an approximate NCQ scaling as shown by the data.

Strongly indication of partonic degree of freedom in small system !

Zhao, Ko, Liu, Qin & Song. Phys. Rev. Lett. 125 7 072301(2020)

$V₂$ & the importance of quark coalescence

-CoLBT-hydro with coalescence works well for PID flow of Pb+Pb collisions from 0 to 8 GeV. Quark coalescence is important at intermediate P_T

thermal-hard parton Coalescence & **Fragmentation** Breaks up the NCQ scaling of v2 in Pb+Pb collisions

Zhao, Chen, Luo, Ke & Wang. Phys. Rev. Lett. 128 2 022302(2022).

Theory: Hydrodynamics & hybrid approach are powerful tool to simulate the QGP fireball evolution and study its properties

Experiment: various flow observable have been measured quantitatively described/predicted by hydro

Theory: Hydrodynamics & hybrid approach are powerful tool to simulate the QGP fireball evolution and study its properties

-We are ready to focus on the initial state of the QGP

> nuclear structure of colliding nuclei

- Relativistic heavy collisions start from nuclei

initial state with deformation

initial state with deformation

- Relativistic heavy collisions start from nuclei

-Collision time $< 10^{-24}$ s directly probe the ground state of nuclei

Collision time $< 10^{-24}$ s

initial state with deformation

- Relativistic heavy collisions start from nuclei

-Collision time $< 10²⁴ s$ directly probe the ground state of nuclei

Collision time $< 10^{-24}$ s

heavy ion collision at intermediate energies breaks up / excites nuclei during the collisions

- Relativistic heavy collisions start from nuclei
- -Collision time $< 10²⁴ s$ directly probe the ground state of nuclei -Well calibrated calculations for QGP evolution; to focus on the initial state

Rich collision systems at RHIC & the LHC **PHOBOS BRAHMS** ENIX UU PbPb AuAu XeXe 60 RuRu / ZrZr CuCu 40 20 OO. 100 250 50 150 200 А

¹⁹⁷Au+¹⁹⁷Au、²³⁸U+²³⁸U、²⁰⁸Pb+²⁰⁸Pb、¹²⁹Xe+¹²⁹Xe、⁹⁶Zr+⁹⁶Zr、 ⁹⁶Ru+⁹⁶Ru、⁶⁴Cu+⁶⁴Cu 、 ¹⁶O+¹⁶O 、p+²⁰⁸Pb、p+p … …

Study the deformation of ⁹⁶Ru and ⁹⁶Zr at RHIC isobar run

32

$96Ru+96Ru$ and $96Zr+96Zr$ Collisions @ RHIC isobar run

- To search the Chiral Magnetic Effect (CME)

- Obviously different early magnetic field for Ru+Ru and Zr+Zr collisions

Deformation of ⁹⁶Ru and ⁹⁶Zr

Deformation of $96Ru$ & $96Zr$ — personal comments

Probe the deformation (mass distributions) of ⁹⁶Ru & ⁹⁶Zr

Relativistic heavy ion collisions

initial conditions: (deformation / mass distributions)

Initial conditions (TRENTO)

- Sample nucleon position in deformed nuclei with:

$$
\rho(r,\theta,\phi) = \frac{\rho_0}{1 + e^{(r - R(\theta,\phi))/a_0}}
$$
Quadrupole:
\n
$$
R(\theta,\phi) = R_0 \left(1 + \beta_2 [\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}] + \beta_3 \sum_{m=-3}^3 \alpha_{3,m} Y_{3,m} + \beta_4 \sum_{m=-4}^4 \alpha_{4,m} Y_{4,m}\right)
$$

ac₂{3}for Ru+Ru and Zr+Zr collisions

 $\rm{ac}_{2}\{3\}$ is sensitive to quadrupole and octupole deformations

$$
ac_2\{3\} = \langle v_2^2 v_4 \cos 4(\Phi_2 - \Phi_4) \rangle,
$$

Probe the shape phase transition with Xe +Xe collisions

The Phase Transition

Relativistic heavy ion collisions -mainly aim to explore QCD Phase **Transition**

¹²⁹Xe+¹²⁹ Xe collision

-explore the second-order shape phase transition occurring in the vicinity of ¹²⁸*-*¹³⁰Xe

S. Zhao, H. Xu, Y. Zhou, Y. Liu, H. Song, arXiv: 2403.07441 [nucl-th]

Shape phase transition for Xe isotopes

The shape phase transition:

-rapid structural change along certain isotope or isotone chains -the dynamic interplay between the spherical-driving pairing interaction and the deformation-driving proton-neutron interaction

The shape phase transition for the Xe isotopes:

-Within the the framework of the interacting boson model (IBM), the Xe isotopes undergo a shape phase transition from a *γ*-soft rotor to a spherical vibrator

R. F. Casten, Nucl. Phys. A 439, 289 (1985). G. Puddu, O. Scholten, and T. Otsuka, Nucl. Phys. A 348, 109 (1980). R. F. Casten and P. Von Brentano, Phys. Lett. B 152, 22 (1985).

-the critical point is described by the *E*(5) symmetry, associated with a 2nd order phase transition

F. Iachello, Phys. Rev. Lett. 87, 052502 (2001). F. Iachello, Phys. Rev. Lett. 85, 3580 (2000).

$E(5)$ symmetry near $^{128-130}$ Xe

the measured energy spectroscopy of $128Xe$ agrees well with the E(5) predic. (the normalized transition strengths, the branching ratios …)

R. Rodriguez-Guzman, et. al. Phys. Rev. C 76, 064303 (2007)

L.M.Robledo, et. al. Phys. Rev.C 78 (2008) 034314

 $Q_0(b)$

 Q_0 (b)

 $Q_0(b)$

-Model calculations indicate a critical point of the second-order shape phase transition ($E(5)$ symmetry) lies in the vicinity of 128−130Xe, associated with a *γ*-soft deformation

→Exploring the 2nd order shape transition of Xe isotope with Xe+Xe collisions at the LHC and **NICA**

Probe the y -soft deformation of 129 Xe

Relativistic heavy ion collisions

Initial conditions (TRENTO)

- Sample nucleon position in deformed nuclei with:

$$
\rho(r,\theta,\phi) = \frac{\rho_0}{1 + e^{(r - R(\theta,\phi))/a_0}}
$$

 $R(\theta, \phi) = R_0(1 + \beta_2[\cos \gamma Y_{2,0}(\theta, \phi) + \sin \gamma Y_{2,2}(\theta, \phi)]).$

initial conditions: (deformation / mass distributions)

Rigid triaxial deformation $(y=30°)$

Bally et. al. Eur.Phys.J. A 58 (2022) 9, 187,

 $\ensuremath{\mathnormal{Z}}$

γ-soft (flat distribution in 0≤γ≤60⁰)

Z. P. Li, et. al. Phys. Rev. C 81, 034316 (2010),

3-particle correlation

-Our calculations with rigid triaxial or γ -soft deformation of ¹²⁹Xe can describe the measured p_2 and Γ_{pT} equally well.

 $\varphi_2, \Gamma_{p_T} \propto \beta_2^3 \cos(3\gamma)$ insensitive to triaxial deformation γ=30° and γ-soft 0≤γ≤60°

S. Zhao, H. Xu, Y. Zhou, Y. Liu, H. Song, arXiv: 2403.07441 [nucl-th]

6-particle correlations

The y-soft deformation of $129Xe$ lead to a clear enhancement of 6-particle correlations $p_{4,2}$ in ultra-central Xe+Xe collisions

S. Zhao, H. Xu, Y. Zhou, Y. Liu, H. Song, arXiv: 2403.07441 [nucl-th] ⁴³

Probe the α -cluster of ¹⁶O at RHIC and the LHC

¹⁶O

 $16O+16O$ collisions and $p+16O$ collisions originally aim to study the possible formation of the QGP in small systems

¹⁶O

-ab initio lattice calculations demonstrate the nucleons are arranged in a tetrahedral alpha clusters in the ground state

E. Epelbaum, et al Phys. Rev. Lett.112, no.10, 102501 (2014)

Recent NLEFT calculations for light nuclei: Intrinsic shape composed of alpha clusters

⁴⁵ Shen, Elhatisari, Lahde, Lee, Lu, UGM, Nature Commun. **14** (2023) 2777 Dee Lee talk, today

α-cluster of ¹⁶O from nuclear structure

-ACM calculations show that the low-lying states of ¹⁶O can be described as rotationvibration of a 4α cluster with tetrahedral symmetry.

R.Bijker and F.Iachello, Phys. Rev. Lett. 112, no.15, 152501 (2014)

(a) Initial state "A", 8 equivalent orientations.

Relativistic heavy ion collision to probe the structure of ^{16}O

Relativistic heavy ion collisions

initial conditions: (with or without α-cluster)

Initial conditions (TRENTO)

-Woods-Saxon: $\rho(r,\theta,\phi) = \frac{\rho_0}{1 + \rho(r - R(\theta,\phi))/a_0}$ Spherical shape -Alpha-Cluster: $f_i(\mathbf{r}) = A \exp \left[-\frac{3(\mathbf{r} - \mathbf{r}_i)^2}{2r_{\alpha}^2} \right]$ tetrahedral alpha clusters

Sensitive observables for α-clustering

Several observables, such as the correlator Γ the *vⁿ – p*^T correlations in ¹⁶O+¹⁶O collisions are sensitive to the compactness of the *α* cluster in the colliding nuclei, which can be used to constrain the detailed configurations of 16O in the future.

Y. Wang, S. Zhao, B. Cao, H. Xu and H. Song. arXiv: 2401.15723 [nucl-th].

Probe neutron skin at RHIC and the LHC

Neutron skin & neutron star

EOS of nuclear matter

$$
\epsilon(\rho,\alpha)=[\epsilon_{SNM}(\rho_0)+S(\rho_0)\alpha^2)]+\alpha^2L\frac{\rho-\rho_0}{3\rho_0}+\frac{1}{2}(K_0+\alpha^2K_{sym})(\frac{\rho-\rho_0}{3\rho_0})^2
$$

L: the first order term in EOS; symmetry energy; Large L thick neutron skin

Probe the Neutron Skin at low energy nuclear physics

Parity-Violating Electron Scattering in Jefferson Lab

Relativistic heavy ion collision to probe the neutron skin

Probing the neutron skin of ¹⁹⁷Au and ²⁰⁸Pb

semi-isobaric double ratio

A scaling behavior was found in double ratio of v2{2}/v3{2} when Au and Pb have the neutron skins of the same size, The measured flow harmonics at various centrality suggest Au and Pb have similar neutron skin

Q. Liu, H. Xu and H. Song. Phys.Rev.C 109 (2024) 3, 034912.

Probing nuclear structure across energy scales

-Relativistic heavy ion collisions at RHIC and the LHC have provide rich collision systems to study various aspects in nuclear structure

-Past & future workshop, program for such intersection study

- "Intersection of nuclear structure&high-energy nuclear collisions" INT, Jan.23- Feb.24 2023
- "Exploring Nuclear Physics across Energy Scales", Beijing, April 15-17 2024 "Light ion collisions at the LHC" CERN, Oct 21-25 2024

→ Probing nuclear structure at **NICA**, exploring the 2nd order shape transition of Xe isotope with Xe+Xe collisions

Probing exotic hadrons in relativistic heavy ion collisions

 $\overline{3.8}$

 $m_{J/\psi\pi\pi}$ (GeV/c²)

3.75

3.65

 3.85

 $\overline{3.9}$

 3.95

production is studied in lead-lead (Pb-Pb) collisions at a center-of-mass energy of $\sqrt{}$ nucleon pair, using the decay chain $X(3872) \rightarrow J/\psi \pi^+ \pi^- \rightarrow \mu^+ \mu^- \pi^+ \pi^-$. The data w

Advantage to study exotic hadrons in heavy ion collisions?

$f_0(980)$

 $I^G(J^{PC}) = 0^+(0^{++})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (980-1010) - i (20-35)$ MeV ^[*i*] Mass (Breit-Wigner) = 990 ± 20 MeV [i] Full width (Breit-Wigner) = 10 to 100 MeV $[i]$

 $a_0(980)$

$$
^{\mathcal{G}}(J^{\mathcal{PC}})=1^{-}(0^{++})
$$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (970 - 1020) - i (30 - 70)$ MeV $[i]$ Mass $m = 980 \pm 20$ MeV [i] Full width $\Gamma = 50$ to 100 MeV $[i]$

Particle physics **High energy nuclear physics**

A large amount of particles produced \rightarrow momentum distributions

-particle yield \rightarrow - p_T spectra - flow anisotropy

More info

Advantage: provide complimentary information to constrain properties of hadrons

disadvantage: huge background

F.K.Guo, C.Hanhart, U.G. \rightarrow momentum distributions \downarrow Rev. Mod. Phys.90, no.1, 015004 (2018)

Probing $f_0(980)$ in p-Pb collisions

p_T spectra

-- anisotropy for particle momentum distribution

-- contains rich information to constrain the formation /properties of an exotic hadron

 $3H₂$

 $f_0(980)$

Different flow behavior for hadrons produced near Tc or generated at kinetic freeze-out

… … …

flow:

-- anisotropy for particle momentum distribution

-- contains rich information to constrain the formation /properties of an exotic hadron

Comments:

-Dominant decay channel: $f_0(980) \rightarrow \pi^+\pi^-$; no PID in CMS, use all charged tracks -p-Pb collisions, less background contamination for f₀(980) reconstruction

> -flow is not easy to measure in small systems -CMS: event plane method for flow measurement -non flow subtraction

 F low for f $_0$ (980): need efforts from ALICE, STAR collaboration efforts from the theory community

 $I^G(J^{PC})$ **State** M [MeV] S -wave threshold(s) [MeV] $\Gamma[\text{MeV}]$ Decay mode(s) [branching ratio(s)] 449^{+22}_{-16} $f_0(500)$ (Peláez, 2016)^a $0^+(0^{++})$ $\pi\pi(173^{+22}_{-16})$ 550 ± 24 $\pi\pi$ [dominant] $\gamma\gamma$ $\kappa(800)$ $\frac{1}{2}(0^{+})$ 682 ± 29 547 ± 24 $K\pi(48 \pm 29)$ πK $0^+(0^{++})$ $f_0(980)$ 990 ± 20 $10 \sim 100$ K^+K^- (3 ± 20) $\pi\pi$ [dominant] $K^0\bar{K}^0(-5\pm 20)$ $K\bar K$ $\gamma\gamma$ $a_0(980)$ $1^-(0^{++})$ 980 ± 20 $50 \sim 100$ $K\bar{K}(-11 \pm 20)$ $\eta\pi$ [dominant] $K\bar K$ $\gamma\gamma$ $0^+(1^{++})$ $\overline{KK}^*(39.1 \pm 0.9)$ $f_1(1420)$ 1426.4 ± 0.9 54.9 ± 2.6 $K\bar{K}^*(\text{dominant})$ $\eta \pi \pi$ [possibly seen] $\phi\gamma$ $1^-(1^{++})$ 1414_{-13}^{+15} 153^{+8}_{-23} $K\bar{K}^*(27^{+15}_{-13})$ $a_1(1420)$ $f_0(980)\pi$ [seen] $\overline{1835.8^{+4.0}_{-3.2}}$ $\frac{7^{2}(0^{-+})}{2^{2}(0^{-+})}$ $X(1835)$ $p\bar{p}(-40.7^{+4.0}_{-3.2})$ 112 ± 40 $p\bar{p}$ $\eta' \pi \pi$ $K_S^0 K_S^0 \eta$ **High energy nuclear physics** $D^+_{\ast}\pi^0$ 2317.7 ± 0.6 $D_{s0}^*(2317)^+$ $0(0^+)$ $\,<$ $D_{s1}(2460)^+$ $0(1^+)$ 2459.5 ± 0.6 \lt $[(48 \pm 11)\%]$ $[(18 \pm 4)\%]$ $\pi^{-}[(4\pm1)\%]$ $(7)^+$ γ $[(4^{+5}_{-2})\%]$ $D_{s1}^*(2860)^+$ $0(1^{-})$ 2859 ± 27 159 DK D^*K \rightarrow With similar PID as STAR A large amount of particles produced \rightarrow momentum distributions explore light exotic hadrons -particle yield at **NICA**, - pT spectra \rightarrow F.K.Guo, C.Hanhart, U.G.Meissner, Q.Wang, Q.Zhao & B.S.Zou, Rev. Mod. Phys.90, no.1, 015004 (2018)

TABLE I Mesons that contain at most one heavy quark that cannot be easily accommodated in the $q\bar{q}$ quark model. Their quantum numbers $I^G(J^{PC})$, masses, widths, the nearby S-wave thresholds, $m_{\text{threshold}}$, where we add in brackets $M - m_{\text{threshold}}$, and the observed decay modes are listed in order. The data without references are taken from the 2016 edition of the Review of Particle Physics (Patrignani et al., 2016).

Many Thanks

(Gu An for CMS)

- \triangleright v_2 of f₀(980) measured as a function of p_T up to 10 GeV/c
- Assuming NCQ scaling, n_q of $f_0(980)$ is consistent with 2.
- \triangleright $n_q = 4$ (tetra-quark state or K \bar{K} molecule) excluded with 7.7σ .
- \triangleright $n_q = 3$ (qq̃g hybrid) excluded with 3.5 σ .
- Our data favor $q\bar{q}$ normal meson state for $f_0(980)$.