Feasibility study for anisotropic flow measurements in the BM@N and MPD-FXT experiments at Nuclotron-NICA

Mikhail Mamaev (JINR, MEPhI) for the BM@N collaboration

The work has been supported by the Ministry of Science and Higher Education of the Russian Federation, Project "Fundamental and applied research at the NICA megascience experimental complex" № FSWU-2024-0024

The 2nd China-Russia Joint Workshop on NICA Facility 11/09/2024

Anisotropic flow & spectators

The azimuthal angle distribution is decomposed in a Fourier series relative to reaction plane angle:

$$
\rho(\varphi-\Psi_{RP})=\tfrac{1}{2\pi}(1+2\textstyle\sum_{n=1}^\infty v_n\cos n(\varphi-\Psi_{RP}))
$$

Anisotropic flow:

$$
v_n = \langle \cos\left[n(\varphi - \Psi_{RP})\right]\rangle
$$

Anisotropic flow is sensitive to:

- Time of the interaction between overlap region and spectators
- Compressibility of the created matter

Density n_e [n_a]
Describing the high-density matter using the mean field Flow measurements constrain the mean field

Discrepancy is probably due to non-flow correlations

HADES: dv_1/dy scaling with collision energy and system size

- Scaling with collision energy is observed in model and experimental data
- Scaling with system size is observed in model and experimental data
- We can compare the results with HIC-data from other experiments(e.g. STAR-FXT Au+Au

Flow vectors

From momentum of each measured particle define a *u*_n-vector in transverse plane:

$$
u_n=e^{in\phi}
$$

where φ is the azimuthal angle

Sum over a group of $u_{\sf n}^{\sf}$ -vectors in one event forms Q_n-vector:

$$
Q_n = \tfrac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{i n \Psi_n^{EP}}
$$

 Ψ_{n}^{EP} is the event plane angle

Flow methods for v_n calculation

M Mamaev et al 2020 PPNuclei 53, 277–281
M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$
v_1=\tfrac{\langle u_1 Q_1^{F_1}\rangle}{R_1^{F_1}} \qquad \ \ v_2=\tfrac{\langle u_2 Q_1^{F_1} Q_1^{F_3}\rangle}{R_1^{F_1} R_1^{F_3}}
$$

Where $\mathsf{R}_{_{1}}$ is the resolution correction factor

$$
R^{F1}_1=\langle\cos(\Psi^{F1}_1-\Psi^{RP}_1)\rangle
$$

Symbol "F2(F1,F3)" means $\mathsf{R}_{_{1}}$ calculated via (3S resolution):

$$
R_1^{F2(F1,F3)}=\frac{\sqrt{\langle Q_1^{F2}Q_1^{F1}\rangle\langle Q_1^{F2}Q_1^{F3}\rangle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}\rangle}}
$$

Method helps to eliminate non-flow Using 2-subevents doesn't

Symbol "F2{Tp}(F1,F3)" means R1 calculated via (4S resolution):

$$
R_1^{F2\{Tp\}(F1,F3)}=\langle Q_1^{F2}Q_1^{Tp} \rangle \frac{\sqrt{\langle Q_1^{F1}Q_1^{F3}\rangle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}\rangle \langle Q_1^{Tp}Q_1^{F3}\rangle}}
$$

Performance Analysis

Azimuthal asymmetry of the BM@N acceptance

9

Performance study: R1

Resolution is lower for higher energies due to lower v_1

F2 F3

Perfromance study: v_1 and v_2 in Xe+Cs (JAM)

● Good agreement between reconstructed and pure model data for all three energies

Data Analysis

Centrality determination methods

Physics of Atomic Nuclei, 2024, Vol. 87, No. 1, pp. 389–394

 $\frac{1}{2}$

14 BM@N run 8 MC-Glauber Xe-Cs(I) @ 3.8A GeV Γ -fit 12 10 8 6 4 $\overline{2}$ 0 20 50 30 40 60 10 Ω Centrality, %

Two methods for centrality determination: MC-Glauber and Г-fit method are in a good agreement

Particle identification

TOF-400

Proton p_T -y acceptance

15

DATA: R₁ in Xe+Cs(I) collisions

All the estimations for symmetry plane resolutions are in a good agreement ¹⁶

F1 F2 F3

Comparison of the TOF performances

The results from TOF-400 and TOF-700 are in a good agreement

Systematics due to symmetry plane estimation (non-flow)

 $\mathsf{v}_{_{1}}$ as a function of pT and y

dv₁/dy|_{y=0} vs collision energy

 $dv₁/dy$ is in a good agreement with the world data 20

Outlook

- \bullet 2025-2026 we expect the Beam-Energy scan program (2A, 3A, 4A GeV)
- The results for higher-harmonics flow is in the process of analysis
- The analysis for $\wedge v_1$ is undergoing
- Started the analysis for d flow

Summary

- Directed flow of protons is measured multidifferentially as a function of $\bm{{\mathsf{p}}}_\textsf{T}$, y and centrality
- The JAM model describes the $v_1(y)$ reasonably well in high transverse momentum region
- The directed flow slope at midrapidity $dv_1/dy|_{y=0}$ was extracted
- The results for directed flow slope dv_1/dy of protons are in a good agreement with the world data

Backup

Quality assurance for the recent data

The preliminary list of bad runs based on QA study [18M events] RunId: 6968, 6970, 6972, 6973, 6975, 6976, 6977, 6978, 6979, 6980, 6981, 6982, 6983, 6984, 7313, 7326, 7415, 7417, 7435, 7517, 7520, 7537, 7538, 7542, 7543, 7545, 7546, 7547, 7573, 7575, 7657, 7659, 7679, 7681, 7843, 7847, 7848, 7850, 7851, 7852, 7853, 7855, 7856, 7857, 7858, 7859, 7865, 7868, 7869, 7907, 7932, 7933, 7935, 7937, 7954, 7955, 8018, 8031, 8032, 8033, 8115, 8121, 8167, 8201, 8204, 8205, 8208, 8209, 8210, 8211, 8212, 8213, 8215, 8289.

Centrality determination: vs Centrality

- Nhits>16
- $0 < n < 2$

Multiplicity-based centrality determination using inverse Bayes was used

Results: $v_1(p_T)$

Systematics: xx, yy, F1, F2, F3

Good agreement with MC data

Results: $v_2(y)$

Systematics: xxx, xyy

Good agreement with MC data

The Bayesian inversion method (Γ-fit)

2 main steps of the method:

28

Relation between multiplicity N_{ch} and impact parameter b is defined by

the fluctuation kernel:

$$
P(N_{ch}|c_b) = \frac{1}{\Gamma(k(c_b))\theta^k} N_{ch}^{k(c_b)-1} e^{-n/\theta} \qquad \frac{\sigma^2}{\langle N_{ch}\rangle} = \theta \approx const, k = \frac{\langle N_{ch}\rangle}{\theta}
$$

\n
$$
c_b = \int_0^b P(b')db' - \text{centrality based on impact parameter}
$$

\nMean multiplicity as a function of c_b can be defined as follows:
\n
$$
\langle N_{ch}\rangle = N_{hnee} \exp\left(\sum_{j=1}^3 a_j c_b^j\right) N_{hnee}, \theta, a_j - 5 \text{ parameters}
$$

\nFit function for N_{ch} distribution:
\n
$$
P(N_{ch}) = \int_0^1 P(N_{ch}|c_b)dc_b \qquad P(b|n_1 < N_{ch} < n_2) = P(b) \frac{\int_{n_1}^{n_2} P(N_{ch}|b)dN_{ch}}{\int_{n_1}^{n_2} P(N_{ch}|b)dN_{ch}}
$$

Centrality determination: multiplicity fit

- Nhits>16
- $0 < n < 2$

Multiplicity-based centrality determination (Г-fit) was used

PID procedure

W. Blum, W. Riegler, L. Rolandi, Particle Detection with Drift Chambers (2nd ed.), Springer, Verlag (2008)

Fit dE/dx distributions with Bethe-Bloch parametrization:

$$
f(\beta \gamma) = \frac{p_1}{\beta^{p_4}} \left(p_2 - \beta^{p_4} - \ln \left(p_3 + \frac{1}{(\beta \gamma)^{p_5}} \right) \right)
$$

$$
\beta^2 = \frac{p^2}{m^2 + p^2}, \beta \gamma = \frac{p}{m} \quad p_i \text{- fit parameters}
$$

Fit *(dE/dx - f(βɣ))/f(βɣ)* with gaus in the slices of p/q and get $\sigma_{\text{p}}(\text{dE}/\text{d} \text{x})$

Fit m² with gaus in the slices of p/q and get $\sigma_{\text{p}}(\text{m}^2)$ **(dE/dx,m)→(x,y) coordinates for PID:**

$$
x_p = \frac{(dE/dx)^{meas} - (dE/dx)_p^{fit}}{(dE/dx)_p^{fit} \sigma_p^{dE/dx}}, \ y_p = \frac{m^2 - m_p^2}{\sigma_p^{m^2}}
$$

30

PID procedure: Results

Flow vectors

From momentum of each measured particle define a *u*_n-vector in transverse plane:

$$
u_n=e^{in\phi}
$$

where φ is the azimuthal angle

Sum over a group of $u_{\sf n}^{\sf}$ -vectors in one event forms Q_n-vector:

$$
Q_n = \tfrac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{i n \Psi_n^{EP}}
$$

 Ψ_{n}^{EP} is the event plane angle

Additional subevents from tracks not pointing at FHCal: Tp: p; -1.0<y<-0.6;

The BM@N experiment (GEANT4 simulation for RUN8)

Square-like tracking system within the magnetic field deflecting particles along X-axis

Charge splitting on the surface of the FHCal is observed due to magnetic field

Comparison with BM@N performance

BM@N TOF system (TOF-400 and TOF-700) has poor midrapidity coverage at $\sqrt{s_{NN}}$ = 2.5 GeV

- One needs to check higher energies ($\sqrt{s_{NN}}$ = 3, 3.5 GeV)
- More statistics are required due to the effects of magnetic field in BM@N:
	- Only "yy" component of <uQ> and <QQ> correlation can be used

Despite the challenges, both MPD-FXT and BM@N can be used in v_n measurements:

- To widen rapidity coverage
- To perform a cross-check in the future

Anisotropic flow & spectators

The azimuthal angle distribution is decomposed in a Fourier series relative to reaction plane angle:

$$
\rho(\varphi-\Psi_{RP})=\tfrac{1}{2\pi}(1+2\textstyle\sum_{n=1}^\infty v_n\cos n(\varphi-\Psi_{RP}))
$$

Anisotropic flow:

$$
v_n = \langle \cos\left[n(\varphi - \Psi_{RP})\right]\rangle
$$

 $\mathsf{v}_{_{1}}$ - directed flow, $\mathsf{v}_{_{2}}$ - elliptic flow

Anisotropic flow is sensitive to:

➢ Compressibility of the created matter $(t_{exp} = R/c_s, c_s = c\sqrt{dp/d\varepsilon})$
Time of the interaction between overlap region and spectators $(t_{pass} = 2R/\gamma_{CM}\beta_{CM})$

MPD in Fixed-Target Mode (FXT)

Model used: UrQMD mean-field

- Bi+Bi, E_{kin} =1.45 AGeV (\sqrt{s}_{NN} =2.5 GeV)
- Bi+Bi, E_{kin} =2.92 AGeV (\sqrt{s}_{NN} =3.0 GeV)
- Bi+Bi, E_{kin} =4.65 AGeV (\sqrt{s}_{NN} =3.5 GeV)
- Point-like target at $z = -115$ cm
- **GEANT4** transport
- Multiplicity-based centrality determination
- PID using information from TPC and TOF
- Primary track selection: DCA<1 cm
- Track selection:
	- \circ N_{hits}>27 (protons), N_{hits}>22 (pions)

Flow vectors

From momentum of each measured particle define a *u*_n-vector in transverse plane:

$$
u_n=e^{in\phi}
$$

where φ is the azimuthal angle

Sum over a group of $u_{\sf n}^{\sf}$ -vectors in one event forms Q_n-vector:

$$
Q_n = \tfrac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{i n \Psi_n^{EP}}
$$

 Ψ_{n}^{EP} is the event plane angle

Additional subevents from tracks not pointing at FHCal: Tp: p; -1.0<y<-0.6;

Results: $v_1(y)$

Systematics: xx, yy, F1, F2, F3

Good agreement with MC data

Good agreement with MC data

dv₁/dy|_{y=0} vs collision energy

41

Centrality and particle selection

- Half of the recent VF production was analysed
- Event selection criteria ($~100M$ events selected)
	- CCT2 trigger
	- Pile-up cut
	- Number tracks for vertex > 1
- Track selection criteria : χ^2 < 5; M_p² 3σ < m² < M_p² + 3σ; Nhits > 52

Proton N-sigma distributions **TOF-400**

Systematics due to identification and tracking

The systematics is below 2% 44