Electromagnetic Probe at High Baryon Densities

Zaochen Ye (SCNU)

Qingdao, September 10-12, 2024

2nd China-Russia Joint Workshop on NICA Facility

QCD Phase Diagram and Heavy-Ion Collisions

- QCD phase diagram describes different phases of matter under various conditions T vs. μ_B
- Heavy-ion collisions create extreme conditions:
	- Explore QCD diagram with different trajectories
	- Create and study properties of QGP
	- At low baryon densities:
		- Cross-over transition
		- Early universe
	- At high baryon densities:
		- first-order phase transition and critical end point (CEP)
		- EOS to describe neutron star

T at early stage is still poorly known \heartsuit

T at early stage is still poorly known \heartsuit

Thermal Dileptons

How thermal dileptons distribute their *invariant mass will reveal properties of emission* **source: T? partonic/hadronic phase? CSR?...**

Rapp, Wambach, EPJA 6, 415 (1999)

How to Measure Thermal Dileptons

Physical background can be determined using the well-established cocktail simula7on techniques

Thermal Dilepton at RHIC

In-medium ρ dominated

• **Similar** mass spectrum

Thermal Dilepton (LMR) at RHIC

"Excess " = "Inclusive" – "Cocktail Sum" $(d^2N_u/dM/dy)/(dN_d/dy)$ (20 MeV/ c^2)⁻¹ $-$ STAR Au+Au 54.4 GeV (0-80%) **e+e-**-- STAR Au+Au 27 GeV (0-80%) <u>NA60 In+In 17.3</u> GeV (dN_{ck}/dn > 30) **μ+μ -** 10 $^{-6}$ — T_{LMR} fit (54.4 GeV)
— T_{LMR} fit (27 GeV)
— T_{IMR} fit (54.4 GeV) $(a*BW+b*M^{3/2}) \times e^{cM/T}$ \cdots T_{IMR} fit (27 GeV) Scaled from $p+p|_{p \to \pi^+\pi^-}$ Scaled from $e^+ + e^-$ ($\rho \rightarrow \pi^+ \pi^-$) Ω 1.5 \mathfrak{p} 2.5 M_{th} (GeV/ c^2) STAR, arXiv:2402.01998

In-medium ρ dominated

• **Similar** mass spectrum

• **Similar** temperature

• $T_{LMR}^{27 \text{GeV}}$ = 167 $\pm 21 \pm 18$ (MeV)

•
$$
T_{LMR}^{54.4GeV} = 172 \pm 13 \pm 18
$$
 (MeV)

•
$$
T_{LMR}^{17.3 \text{GeV}} = 165 \pm 4 \text{ (MeV)}
$$

• Indicating radiation source **is a** "**similar hot bath"** in 27/54.4 GeV Au+Au and 17.3 GeV In+In collisions

 $\mathbf{0}$

Thermal Dilepton (IMR) at RHIC

" $\sum_{i=1}^n$ **Excess" = "Inclusive" – "Cocktail Sum"**

QGP dominated

T_{IMR} from STAR: ~ 300 MeV

T_{IMR} from NA60:

- **205 ± 12 MeV** (1.2<M<2.0 GeV/c2)
- **246 ± 15 MeV** (1.2<M<2.5 GeV/c2)

 T_{INR} > T_{pc} (156 MeV): emission source is dominantly the **partonic phase - QGP**

Thermal Dilepton at SIS18

- In-medium ρ completely melt via frequent scattering with surrounding baryons
- T_{LMR} \sim 70-80 MeV, distribution well reproduced by transport model considering thermal hadronic medium radiation

Small Collisions Connected to Big Collisions

- Space and time scales differ by 10²⁰, yet matter with similar temperature and density
- Thermal dileptons in HIC can advance the understanding of neutron star merger

simula4ons

simulations

Summary of Temperatures

STAR, arXiv:2402.01998

Thermal dileptons in LMR

• **T close to both T_{ch} and T_{pc}**

Summary of Temperatures

STAR, arXiv:2402.01998

Thermal dileptons in LMR

- **T close to both T_{ch} and T_{pc}**
- **Emitted from hadronic phase, dominantly around phase transition**

Summary of Temperatures

STAR, arXiv:2402.01998

Thermal dileptons in LMR

- **T close to both T_{ch} and T_{pc}**
- **Emitted from hadronic phase, dominantly around phase transition**

Thermal dileptons in IMR

- **T** is higher than T_{pc}
- **Emitted from QGP phase**

Note: μ_B (QGP) $\neq \mu_B$ (Ch. freeze-out)

Future Temperatures

STAR, arXiv:2402.01998

Is Chiral Symmetry Restored?

Rapp model: PRC 63 (2001) 054907, Adv HEP 2013 (2013) 148253, PLB 753 (2016) 586 PHSD model: NPA 807, 214 (2008); NPA 619, 413 (1997) PRC 97, 064907 (2018)

Experimental Evidence of CSR

CSR \vert \vert \vert \vert \vert \vert Axial-VM show up in VM spectra inside the medium via chiral mixing

Rapp and Hohler: PLB 731 (2014) 103-109

Electric Conductivity of Hot QCD Medium

R. Rapp, et al, NPA 673, 357 (2000)

- Enhancement of dielectron yield at very low p_T and low mass
- **Low energy collisions: smaller contributions from QED, QGP**

Summary and Next

Lessons from exist thermal dileptons:

- In-medium rho is significantly broaden
- $T^{LMR} \sim T_{ch} \sim T_{pc}$ at both RHIC and SPS
- $T^{LMR} \sim 70-80$ MeV at SIS18
- $T^{IMR} > T_{DC}$ at both RHIC and SPS (QGP)

Future thermal dileptons

- Huge experimental efforts and detailed energy scan, especially at high baryon densities
	- Energy, time dependent temperatures
	- Chiral symmetry restoration
	- **Critical End Point**
	- **Electric conductivity**

Sunset 2024-09-10

THANKS

BACKUP SLIDES

Examples of Data vs. Cocktail

Clear enhancement compared to cocktail contributions in both low mass region (**LMR**) and intermediate mass region (**IMR**)

STAR Data vs. Models

Rapp model: PRC 63 (2001) 054907, Adv HEP 2013 (2013) 148253, PLB 753 (2016) 586 PHSD model: NPA 807, 214 (2008); NPA 619, 413 (1997) PRC 97, 064907 (2018)

Both models can **well describe the ρ broadening at LMR**

Rapp model: macroscopic many-body approach medium described by cylindrical expanding fireball with lQCD EoS; in-medium ρ-propagator; resonance + π cloud + baryons

PHSD model: microscopic transport approach medium described by Dynamical Quasi-Particle Model (DQPM); microscopic partonic or hadronic scattering; collisional broadening

PHENIX, PRC 109, 044912 (2024) Scaling of Non-Prompt photons

Teff is Enhanced by Radial Flow

PHYSICAL REVIEW C 89, 044910 (2014)

Thermal photons as a quark-gluon plasma thermometer reexamined

Chun Shen^{*} and Ulrich Heinz Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117, USA

Jean-François Paquet Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, Canada H3A 2T8

Charles Gale Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, Canada H3A 2T8 and Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, D-60438 Frankfurt am Main, Germany (Received 11 August 2013; revised manuscript received 28 March 2014; published 28 April 2014)

"**Most photons are emitted from fireball regions with T~T**_c near the quark-hadron phase transition, but that their effective temperature is significantly enhanced by **strong radial flow.**"

Thermal Dilepton ⊕ Medium Flow

$$
\tfrac{1}{m_T} \tfrac{dN}{dm_T} \propto \exp\left(-\tfrac{m_T}{T_{eff}}\right)
$$

M < 1 GeV/c2 :

- T_{eff} rise linearly \rightarrow In-medium radiation pushed by radial flow
- **T**_{eff} peaks at m_ρ

M > 1 GeV/c2:

- T_{eff} suddenly drop ~50 MeV \rightarrow **dominant emission source from hadronic to partonic matter**
- **Teff ~ 200 MeV (< 246 MeV)**

Chiral Symmetry Restoration

Rapp and Hohler: PLB 731 (2014) 103-109

Measure a₁ theoretically

- Utilizing in-medium Weinberg sum rules to relate a_1 and p spectral function
- ρ spectral function and T dependent order parameters describing RHIC/SPS data as input
- Observe how does a₁ spectral function behave under finite temperatures

Experimental evidence is

a₁ is **theoretically observed** to be merged with ρ in hot medium \rightarrow chiral symmetry is restored

$$
\frac{dN_{ee}}{d^4x d^4Q} = \frac{-\alpha_{em}^2}{\pi^3 Q^2} f^B(q_0, T) \text{ Im } \Pi_{em}(M, q; T, \mu_B)
$$

\nEM Correlation Fct.:
$$
\Pi_{em}^{\mu\nu}(Q) = -i \int d^4x \, e^{iQx} \langle \langle j_{em}^{\mu}(x) j_{em}^{\nu}(0) \rangle \rangle
$$

\nQuark basis:
$$
j_{em}^{\mu} = \frac{2}{3} \overline{u} \gamma^{\mu} u - \frac{1}{3} \overline{d} \gamma^{\mu} d - \frac{1}{3} \overline{s} \gamma^{\mu} s \text{ Continuum}
$$

\nHadron basis:
$$
j_{em}^{\mu} = \frac{1}{2} (\overline{u} \gamma^{\mu} u - \overline{d} \gamma^{\mu} d) + \frac{1}{6} (\overline{u} \gamma^{\mu} u + \overline{d} \gamma^{\mu} d) - \frac{1}{3} \overline{s} \gamma^{\mu} s
$$

\n
$$
= \frac{1}{\sqrt{2}} j_{\rho}^{\mu} + \frac{1}{3\sqrt{2}} j_{\omega}^{\mu} - \frac{1}{3} j_{\phi}^{\mu}
$$

Photons in Heavy Ion Collisions

Direct Photons at RHIC

PHENIX, PRC **109**, 044912 (2024)

• PHENIX new data consistent with previous published results, significant excess at low p_T

PHENIX, PRC **109**, 044912 (2024)

- PHENIX new data consistent with previous published results, significant excess at low p_T
- Universal scaling behaviour in A+A collisions at different collision energies and systems

September 11, 2024 Zaochen Ye (SCNU) 35

Direct Photons at RHIC and LHC

ALICE, arXiv:2308.16704

- Universal charge density scaling behaviour hold at both RHIC and LHC
- However: ALICE data agrees with both STAR and PHENIX data within large uncertainty while STAR and PHENIX show clear discrepancy

September 11, 2024 Zaochen Ye (SCNU) 36

Flow (v_2) of Direct Photons at RHIC

 v_2 of direct photons is comparable to that of π^0 and decay photons \rightarrow direct photons are mostly produced at late stage

September 11, 2024 Zaochen Ye (SCNU) 37

Direct Photon Puzzle is Still Unsolved

Observed v_2 and yield from PHENIX cannot be simultaneously decribed by theory, while p_T and size dependent yields from STAR can be well reproduced by theory

Non-Prompt Photons and Effective Temperature

• Effective temperature can be extracted as the inverse slope of p_T spectra

Effective T from Non-Prompt Photons

- T_{eff} are higher the T_{pc} , shows no clear system size dependence
- Clear p_T dependence, no clear dependence on collision energy
- However, interpretation of T_{eff} is complicated (radial flow, pre-equilibrium...)
	- Most of photons is radiated around T_c --- C. Shen, U.W. Heinz, J.F. Paquet, C. Gale: PRC 89 044910 (2014)

Virtual Photons Shed Light on the Early Temperature of Dense QCD Matter

Jessica Churchill,¹ Lipei Du \mathbf{Q} ,^{1,*} Charles Gale \mathbf{Q} ,¹ Greg Jackson \mathbf{Q} ,^{2,3} and Sangyong Jeon \mathbf{Q} ¹ ¹Department of Physics, McGill University, 3600 University Street, Montreal, Quebec H3A 2T8, Canada ²Institute for Nuclear Theory, Box 351550, University of Washington, Seattle, Washington 98195-1550, USA ³SUBATECH, Nantes Université, IMT Atlantique, IN2P3/CNRS, 4 rue Alfred Kastler, La Chantrerie BP 20722, 44307 Nantes, France

(Received 20 November 2023; revised 18 February 2024; accepted 22 March 2024; published 22 April 2024)

Dileptons produced during heavy-ion collisions represent a unique probe of the QCD phase diagram, and convey information about the state of the strongly interacting system at the moment their preceding offshell photon is created. In this study, we compute thermal dilepton yields from $Au + Au$ collisions performed at different beam energies, employing a $(3 + 1)$ -dimensional dynamic framework combined with emission rates accurate at next-to-leading order in perturbation theory and which include baryon chemical potential dependencies. By comparing the effective temperature extracted from the thermal dilepton invariant mass spectrum with the average temperature of the fluid, we offer a robust quantitative validation of dileptons as an effective probe of the early quark-gluon plasma stage.

DOI: 10.1103/PhysRevLett.132.172301

