The Highly Granular Neutron Detector and Forward Spectator Detectors at the BM@N experiment

> Nikolay Karpushkin on behalf of the INR RAS team

The 2nd China-Russia Joint Workshop on NICA Facility 12 September 2024, Qingdao, China

Overview

- New neutron detector of the BM@N experiment
 - Physics motivation of measuring the neutrons in heavy-ion collision experiments
 - Detector design
 - Performance studies
 - Construction status
- Forward spectator detectors of the BM@N experiment
 - Detectors tasks & design
 - Performance at the XeCsI physics run

EOS for high baryon density matter

The binding energy per nucleon: $E_A(
ho,\delta) = E_A(
ho,0) + E_{sym}(
ho)\delta^2 + O(\delta^4)$ Isospin asymmetry: $\delta = (\rho_n - \rho_p)/\rho$ Symmetric matter Symmetry energy

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

EOS for high baryon density matter

The binding energy per nucleon: $E_A(
ho,\delta) = |E_A(
ho,0)| + |E_{sym}(
ho)|\delta^2 + O(\delta^4)$ Isospin asymmetry: $\delta = (
ho_n -
ho_p)/
ho$

Symmetric matter

Being extensively studied ۲ nowadays using observables (flow, meson yields, etc) to explore incomressibility

$$K_0 = 9\rho^2 \frac{d^2 E_A}{d\rho^2}$$

One of the main sources of uncertainty: discrepancy between experimental data

Symmetry energy

One of the main parameters to study is the E_{sym} slope

$$L = 3\rho \frac{dE_{sym}(\rho)}{d\rho}$$

- No experimental data for beam energies $E_{kin} > 0.4 \text{ GeV}$
- One needs to establish observables sensitive to *L* and obtain new experimental data

New data is needed to further constrain transport models with hadronic d.o.f.

Symmetry energy in high-density region

X.X. Long, G.F. Wei, Phys.Rev.C 109 (2024) 5, 054619

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

- Nuclotron-NICA density region: $2 < n_B/n_0 < 8$
- Symmetry energy E_{sym} has strong density dependence and can be described with its slope

What observables can we use to extract information about *L*?

Observables to study symmetry energy

Rapidity and kinetic energy distributions of n/p ratios show strong dependence on L and weak dependence on K_{θ}

Neutron measurements are required to extract robust information about symmetry energy

Goal: understanding the symmetry energy in the uncovered region of high baryon densities

How:

• Differential study of n/p ratio

Measure:

- protons BM@N spectrometer
- <u>neutrons</u> HGND via their kinetic energy determined by ToF

7000 TODO TODO TODO TODO TODO TODO YZ plane

Mechanical design

Light-tight and air-cooled assembly. Each arm:

• 1 veto-layer

Scint. Layer 11x11

44cm

44cm

- 7 Cu absorber layers (3 cm thick)
- 7 sensitive layers:
 - 11x11 matrix of scintillator detectors 4x4x2.5 cm³
 - surrounded from both sides by PCBs
 - upstream board: LEDs for time calibration
 - downstream board: SiPMs and FEE

F. Guber, et al., Instrum. Exp. Tech. №3 (2024)

Readout scheme

1.Plastic scintillator light flash

2.SiPM EQR15 11-6060D-S

3.High-speed comparator with differential LVDS output

4.FPGA-based TDC

= Response time + ToT

Per channel

- Dynamic range: 0.5-7 MIP
- Time resolution: 130 ps
- Amplitude resolution: < 20% (reconstructed from ToT)

F. Guber, et al., Instrum. Exp. Tech. 66 (2023) 4, 553-557.D. Finogeev, et al., Nucl. Instrum. Meth. A 1059 (2024) 168952.N. Karpushkin, et al., Nucl. Instrum. Meth. A 1068 (2024) 169739.

SiPM: Beijing NDL EQR15 11-6060D-S

Active area 6×6 mm²
Pixel size15×15 μm²
Total pixels: 160 000
PDE: 45%
Gain: 4*10⁵

50

Discussing the ToF cut

At HGND entrance

All HGND surfaces


```
Selecting ToF < 35 ns rejects:
```

background neutrons- 77%gamma- 15%primary neutrons- 8%

Measuring the primary neutrons with energies ≥300MeV

BiBi@3AGeV

DCM-QGSM-SMM 200k minbias

Upper limit: $1.5 * 10^9$ neutrons (additional multi-neutron event recognition is required).

Methods of neutrons energy reconstruction in multineutron events are currently under development.

Construction status

active layer PCB positioning

- Scintillator Cells: All ~2,000 cells (40x40x25 mm³) have been built.
- **PCB**: Design is finalized and production is underway.
- **Readout board**: The FPGA-based TDC readout board is under active development.
- Prototype: First mock-up prototype with scintillator layer assembled; beam test preparations completed.
- **Timeframe:** To be commissioned by the end of 2025.

Forward detectors of the BM@N setup

- FHCal (Forward Hadron Calorimeter)
- FQH (Forward Quarz Hodoscope) Tasks:
- centrality determination
- reaction plane orientation (see <u>report</u> by M.Mamaev)

FHCal (Forward Hadron Calorimeter)

- 34 inner modules $15x15 \text{ cm}^2 42 \text{ Pb/scint samples}$ (16mm Pb + 4mm Scint)
- 20 outer modules $20x20 \text{ cm}^2 60 \text{ Pb/scint samples}$ (16mm Pb + 4mm Scint)
- Length of small module ~ 4 λ_{int} -Length of large module $\sim 5.6 \lambda_{int}$
- Light collection 6 WLS fibers from each 6 conseq. scint tiles (one section) combined to one optical connector at the end of module
- Light readout: 7 MPPCs per small module 10 MPPCs per large module
- Weight of small module 200kg Weight of large module – 500kg

(Typ.=25 °C, Vop=VBR + 4.5 V) 50 30 20 10 300 400 500 600 700

Photon detection efficiency (%)

Wavelength (nm)

800

900

BM@N FHCal

Hamamatsu MPPC S12572-010P 3*3mm² Number of pixels: 90000 Gain: 1.35*10⁵ PDE: 12%

one section

module

production

FQH (Forward Quarz Hodoscope)

measurement of fragments charge in the FHCal beam hole – very forward rapidity region (for event centrality determination)

- 16 strips 160*10*4 mm³ with mylar reflector
- cover beamhole 15*15cm²
- light readout from both edges of each strip
- 2 MPPCs connected in parallel on each side
- each MPPC pair is read with gains x1 and x4

Hamamatsu MPPC S14160-3015PS 3*3mm² Number of pixels: 39984 Gain: 3.6*10⁵ PDE: 32%

Forward detectors in experimental run XeCsI 3.8A GeV and 3.0A GeV

- Forward detectors exhibited stable operation throughout BM@N Experimental Run in 2022-2023.
- Two collision energies were measured
- Almost all statistics fall within 5σ borders, otherwise marked problematic

Event centrality: FQH&FHCal correlation

XeCsI@3.8A GeV. DCM-QGSM-SMM 250k minbias

Cluster

18

FHCal visible energy [MeV]

Event characterisation: Cluster information from simulation

Conclusions

- New Highly-Granular Neutron Detector is a perspective detector for the BM@N experiment aimed to explore the symmetry energy in the high baryon density region
- Construction status:
 - Scintillator Cells: All ~2,000 cells (40x40x25 mm³) have been built.
 - PCB: Design is finalized and production is underway.
 - Readout board: The FPGA-based TDC readout board is under active development.
 - Prototype: First mock-up prototype with scintillator layer assembled; beam test preparations completed.
 - Timeframe: To be commissioned by the end of 2025.
- Forward spectator detectors are designed for the BM@N experiment to estimate centrality and reaction plane
- They were used for the first time in physics run at BM@N and have demonstrated stable work throughout the whole experimental session

Thank you for your attention!

BACKUP

Collective flow as sensitive probe to the EOS

Incompressibility parameter $K_0(\rho)$:

Specifies the behavior of EOS in the given baryon densities

Models with flexible EOS for different (K_0, ρ) are required

$$\frac{dN}{d\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos\left[n(\varphi - \Psi_{RP})\right], v_n = \left\langle \cos\left[n(\varphi - \Psi_{RP})\right] \right\rangle$$

Collective flow is sensitive to:

- Compressibility of the created in the collision matter
- Time of the interaction between the matter within the overlap region and spectators

How to measure the collective flow?

The HGND for the BM@N Experiment

One can define free neutron-proton differential directed flow:

$$v_1^{np} = \frac{N_n(y)}{N(y)} \langle v_1^n(y) \rangle - \frac{N_p(y)}{N(y)} \langle v_1^p(y) \rangle$$

 $N_n(y), N_p(y), N(y)$ - total number of neutrons, protons and nucleons respectively

 $\langle v_1^n(y) \rangle$, $\langle v_1^p(y) \rangle$ - flow of neutrons and protons respectively

- v_1^{np} sensitive to both K_0 and L which may lead to ambigous interpretation
 - More observables might be necessary for robust study of L

FIG. 18. Constraints deduced for the density dependence of the symmetry energy from the present data in comparison with the FOPI-LAND result of Ref. [5] as a function of the reduced density ρ/ρ_0 . The low-density results of Refs. [78–81] as reported in Ref. [82] are given by the symbols, the gray area (HIC), and the dashed contour (IAS). For clarity, the FOPI-LAND and ASY-EOS results are not displayed in the interval $0.3 < \rho/\rho_0 < 1.0$.

Proton p_T**-y acceptance**

TOF-400

Performance study: R1

DCMQGSM-SMM

26

ScWall (Scintillation Wall)

- 36 small inner cells $7.5*7.5*1 \text{ cm}^3 + 138 \text{ big outer cells } 15*15*1 \text{ cm}^3$
- light yield for MIP signal small cells 55 p.e. $\pm 2.4\%$; big cells 32 p.e. $\pm 6\%$.
- beam hole for heavy fragments
- covered with a light-shielding aluminum plate
- light collection by WLS fibers
- light readout with SiPM mounted on the PCB at each scint. cell

light collection from tiles

Hamamatsu MPPC S13360-1325CS 1.3*1.3mm² Number of pixels: 2668

Gain: 7*10⁵ PDE: 25%

(Typ. Ta=25 °C - S13360-**25PE S13360-**25CS Photon detection efficiency (%) 40 30 20 10 400 500 600 200 300 700 800 900 1000 Wavelength (nm)

ScWall Z² distributions

41	42	43	44	45	46	47	48		49		50		51		52		53	54	55	56	57	58
59	60	61	62	63	64	Ŕ	66		67		68		69		29		71	72	73	⁷⁴ Г) ⁷⁵	76
77	78	79	80	81	82	83	84		8	85		86		87		8	89	90	91	92	93	94
95	96	97	98	99	100	101	1	2	3 13	4	5 15	6 16	7	8	9 19	10 20	102	103	104	105	106	107
108	109	110	111	112	113	114	21	22	23 33	24 34	25 35	26 36	37	38	29 39	30 40	115	116	117	118	119	120
121	122	123	124	125	126	127	128		129		130		131		132		133	134	135	136	137	138
139	140	141	142	143	144	J 145	14	.46 147		47	148		149		150		151	152	153	154	155	156
157	158	159	160	161	162	163	164		165		10	56	167		168		169	170	171	172	173	174

